首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.  相似文献   

2.
Human cells: new platform for recombinant therapeutic protein production   总被引:1,自引:0,他引:1  
The demand for recombinant therapeutic proteins is significantly increasing. There is a constant need to improve the existing expression systems, and also developing novel approaches to face the therapeutic proteins demands. Human cell lines have emerged as a new and powerful alternative for the production of human therapeutic proteins because this expression system is expected to produce recombinant proteins with post translation modifications more similar to their natural counterpart and reduce the potential immunogenic reactions against nonhuman epitopes. Currently, little information about the cultivation of human cells for the production of biopharmaceuticals is available. These cells have shown efficient production in laboratory scale and represent an important tool for the pharmaceutical industry. This review presents the cell lines available for large-scale recombinant proteins production and evaluates critically the advantages of this expression system in comparison with other expression systems for recombinant therapeutic protein production.  相似文献   

3.
Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor–ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.  相似文献   

4.
5.
We have engineered the chloroplast of eukaryotic algae to produce a number of recombinant proteins, including human monoclonal antibodies, but, to date, have achieved expression to only 0.5% of total protein. Here, we show that, by engineering the mammalian coding region of bovine mammary-associated serum amyloid (M-SAA) as a direct replacement for the chloroplast psbA coding region, we can achieve expression of recombinant protein above 5% of total protein. Chloroplast-expressed M-SAA accumulates predominantly as a soluble protein, contains the correct amino terminal sequence and has little or no post-translational modification. M-SAA is found in mammalian colostrum and stimulates the production of mucin in the gut, acting in the prophylaxis of bacterial and viral infections. Chloroplast-expressed and purified M-SAA is able to stimulate mucin production in human gut epithelial cell lines. As Chlamydomonas reinhardtii is an edible alga, production of therapeutic proteins in this organism offers the potential for oral delivery of gut-active proteins, such as M-SAA.  相似文献   

6.
The production of recombinant proteins is important in academic research to identify protein functions. Moreover, recombinant enzymes are used in the food and chemical industries, and high-quality proteins are required for diagnostic, therapeutic, and pharmaceutical applications. Though many recombinant proteins are produced by microbial or mammalian cell-based expression systems, plants have been promoted as alternative, cost-effective, scalable, safe, and sustainable expression systems. The development and improvement of transient expression systems have significantly reduced the period of protein production and increased the yield of recombinant proteins in plants. In this review, we consider the importance of plant-based expression systems for recombinant protein production and as genetic engineering tools.  相似文献   

7.
The use of cell‐free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell‐free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell‐free system using instrumented mini‐bioreactors for highly reproducible protein production. We achieved recombinant protein production (~600 μg/ml of tGFP and 500 μg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell‐free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag‐free self‐cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose‐level production of therapeutic proteins at the point‐of‐care.  相似文献   

8.
Overcoming acetate in Escherichia coli recombinant protein fermentations   总被引:1,自引:0,他引:1  
Escherichia coli is the organism of choice for the expression of a wide variety of recombinant proteins for therapeutic, diagnostic and industrial applications. E. coli generates acetic acid (acetate) as an undesirable by-product that has several negative effects on protein production. Various strategies have been developed to limit acetate accumulation or reduce its negative effects to increase the productivity of recombinant proteins. This article reviews recent strategies for reducing or eliminating acetate, including approaches that optimize the protein production process as well as those that involve modifying the host organism itself.  相似文献   

9.
Microalgae are a diverse group of eukaryotic photosynthetic microorganisms. While microalgae play a crucial role in global carbon fixation and oxygen evolution, these organisms have recently gained much attention for their potential role in biotechnological and industrial applications, such as the production of biofuels. We investigated the potential of the microalga Chlamydomonas reinhardtii to be a platform for the production of human therapeutic proteins. C. reinhardtii is a unicellular freshwater green alga that has served as a popular model alga for physiological, molecular, biochemical and genetic studies. As such, the molecular toolkit for this microorganism is highly developed, including well-established methods for genetic transformation and recombinant gene expression. We transformed the chloroplast genome of C. reinhardtii with seven unrelated genes encoding for current or potential human therapeutic proteins and found that four of these genes supported protein accumulation to levels that are sufficient for commercial production. Furthermore, the algal-produced proteins were bioactive. Thus, the microalga C. reinhardtii has the potential to be a robust platform for human therapeutic protein production.  相似文献   

10.
Recombinant protein expression for therapeutic applications   总被引:10,自引:0,他引:10  
In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Many of these applications involve complex glycoproteins and antibodies with relatively high production needs. These demands have driven the development of a variety of improvements in protein expression technology, particularly involving mammalian and microbial culture systems.  相似文献   

11.
A review of over 15 years of research, development and commercialization of plant cell suspension culture as a bioproduction platform is presented. Plant cell suspension culture production of recombinant products offers a number of advantages over traditional microbial and/or mammalian host systems such as their intrinsic safety, cost-effective bioprocessing, and the capacity for protein post-translational modifications. Recently significant progress has been made in understanding the bottlenecks in recombinant protein expression using plant cells, including advances in plant genetic engineering for efficient transgene expression and minimizing proteolytic degradation or loss of functionality of the product in cell culture medium. In this review article, the aspects of bioreactor design engineering to enable plant cell growth and production of valuable recombinant proteins is discussed, including unique characteristics and requirements of suspended plant cells, properties of recombinant proteins in a heterologous plant expression environment, bioreactor types, design criteria, and optimization strategies that have been successfully used, and examples of industrial applications.  相似文献   

12.
转基因植物生产重组药物蛋白的研究进展   总被引:1,自引:0,他引:1  
转基因植物作为一种新型生物反应器,可以安全、经济、有效的生产各种重组蛋白,以此作为大规模的重组药物生产平台备受瞩目。但是表达量低、下游处理复杂、糖基化结构改变是植物反应器中经常遇到的困难,这些困难限制了植物表达重组药物蛋白的商业化发展。针对这些问题,人们分别采用不同的生物技术策略加以解决,对此做一简要综述。  相似文献   

13.
14.
Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy. Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons. On the other hand, it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR), making up the uPA system, are over-expressed in a variety of human tumors and tumor cell lines. The expression of uPA system is highly correlated with tumor invasion and metastasis. To exploit these characteristics in the design of tumor cell-selective cytotoxins, two prominent bacterial protein toxins, i.e., the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins. These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA system-expressing tumor cells, thereby killing these cells. This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents. It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.  相似文献   

15.
Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.  相似文献   

16.
Phospholamban (PLB) and Sarcolipin (SLN) are integral membrane proteins that regulate muscle contractility via direct interaction with the Ca-ATPase in cardiac and skeletal muscle, respectively. The molecular details of these protein-protein interactions are as yet undetermined. Solution and solid-state NMR spectroscopies have proven to be effective tools for deciphering such regulatory mechanisms to a high degree of resolution; however, large quantities of pure recombinant protein are required for these studies. Thus, recombinant PLB and SLN production in Escherichia coli was optimized for use in NMR experiments. Fusions of PLB and SLN to maltose binding protein (MBP) were constructed and optimal conditions for protein expression and purification were screened. This facilitated the large-scale production of highly pure protein. To confirm their functionality, the biological activities of recombinant PLB and SLN were compared to those of their synthetic counterparts. The regulation of Ca-ATPase activity by recombinant PLB and SLN was indistinguishable from the regulation by synthetic proteins, demonstrating the functional integrity of the recombinant constructs and ensuring the biological relevance of our future structural studies. Finally, NMR spectroscopic conditions were established and optimized for use in investigations of the mechanism of Ca-ATPase regulation by PLB and SLN.  相似文献   

17.
18.
Pharmaceutical recombinant proteins are widely used in human healthcare. At present, several protein expression systems are available to generate therapeutic proteins. These conventional systems have distinct advantages and disadvantages in protein yielding; in terms of ease of manipulation, the time required from gene transformation to protein purification, cost of production and scaling-up capitalization, proper folding and stability of active proteins. Depending on the research goal and priorities, a special system may be selected for protein expression. However, considering the limited variety of organisms currently used and their usage restrictions, there are still much more pharmaceutical proteins waiting to be economically and efficiently produced. Distinguished biological and technical features of microalgae Dunaliella such as inexpensive medium requirement, fast growth rate, the ease of manipulation, easy scaling up procedure, facility of milking in bioreactors and the ability of post-translational modifications make this microorganism an attractive candidate for molecular farming.  相似文献   

19.
Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production.  相似文献   

20.
Antibody production by molecular farming in plants   总被引:7,自引:0,他引:7  
"Molecular farming" is the production of pharmaceutical proteins in transgenic plants and has great potential for the production of therapeutic anti-cancer antibodies and recombinant therapeutic proteins. Plants make fully functional recombinant human or animal antibodies. Cultivating transgenic plants on an agricultural scale will produce almost unlimited supplies of recombinant proteins for uses in medicine. Combinatorial library technology is a key tool for the generation and optimisation of therapeutic antibodies ahead of their expression in plants. Optimised antibody expression can be rapidly verified using transient expression assays in plants before creation of transgenic suspension cells or plant lines. Subcellular targeting signals that increase expression levels and optimise protein stability can be identified and exploited using transient expression to create high expresser plant lines. When high expresser lines have been selected, the final step is the development of efficient purification methods to retrieve functional antibody. Antibody production on an industrial scale is then possible using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Recombinant proteins can be produced either in whole plants or in seeds and tubers, which can be used for the long-term storage of both the protein and its production system. The review will discuss these developments and how we are moving toward the molecular farming of therapeutic antibodies becoming an economic and clinical reality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号