首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactate (LDH) and succinate (SDH) dehydrogenases activities decreased in red and white muscles of rat under acute ethanol loading indicating the inhibition of energy metabolism and stepped up lactic acid formation under stress conditions. Aspartate aminotransferase (AAT) and glutamate dehydrogenase (GDH) were found to increase. In contrast to these, the AMP deaminase activity decreased in white muscle suggestive of decreased deamination of nucleic acids. The ornithine cycle enzymes such as argininosuccinate synthetase (ArSS) and arginase indicated diminished activities showing low level of operation of urea cycle and consequent accumulation of ammonia was observed in red muscle with low production of glutamine, whereas in the case of white muscle this trend is reversed. The possible alterations of ethanol toxicity on energy requirements, transdeamination patterns, ureogenesis and glutamine production have been discussed.  相似文献   

2.
1. The activities of fructose 1,6-diphosphatase were measured in extracts of muscles of various physiological function, and compared with the activities of other enzymes including phosphofructokinase, phosphoenolpyruvate carboxykinase and the lactate-dehydrogenase isoenzymes. 2. The activity of phosphofructokinase greatly exceeded that of fructose diphosphatase in all muscles tested, and it is concluded that fructose diphosphatase could not play any significant role in the regulation of fructose 6-phosphate phosphorylation in muscle. 3. Fructose-diphosphatase activity was highest in white muscle and low in red muscle. No activity was detected in heart or a deep-red skeletal muscle, rabbit semitendinosus. 4. The lactate-dehydrogenase isoenzyme ratio (activities at high and low substrate concentration) was measured in various muscles because a low ratio is characteristic of muscles that are more dependent on glycolysis for their energy production. As the ratio decreased the activity of fructose diphosphatase increased, which suggests that highest fructose-diphosphatase activity is found in muscles that depend most on glycolysis. 5. There was a good correlation between the activities of fructose diphosphatase and phosphoenolpyruvate carboxykinase in white muscle, where the activities of these enzymes were similar to those of liver and kidney cortex. However, the activities of pyruvate carboxylase and glucose 6-phosphatase were very low in white muscle, thereby excluding the possibility of gluconeogenesis from pyruvate and lactate. 6. It is suggested that the presence of fructose diphosphatase and phosphoenolpyruvate carboxykinase in white muscle may be related to operation of the alpha-glycerophosphate-dihydroxyacetone phosphate and malate-oxaloacetate cycles in this tissue.  相似文献   

3.
31P-NMR was used to characterise intracellular phosphate pools and their post mortem changes at 7 degrees C in intact red and white cod muscles under anaerobic conditions. A total phosphate content of 55 and 60 mM was observed in red and white muscle, respectively. The concentration of P-creatine was 14 mM in the white and 9 mM in the red muscle, while that of inorganic phosphate, Pi (30 mM), ATP (9 mM), and sugar phosphate (5 mM) were similar in both muscles. During the first 90 min after death, the decrease in P-creatine showed a first order breakdown with a concomitant stoichiometric increase in Pi content, whereas the ATP and sugar phosphate remained the same. The intracellular pH decreased from 7.4 to 7.3 in this period. The steady-state rate constant of myosin ATPase was 0.0054 and 0.0022/min for red and white muscles, respectively. Individuals kept under diminished oxygen tension prior to being killed, showed a reduced P-creatine level in both muscles.  相似文献   

4.
The sub-cellular topography of oxidative and non-oxidative enzymes of the pentose phosphate pathway of carbohydrates metabolism and enzymes of the nucleic exchange (acid and alkaline deoxyribonucleases and ribonucleases) in chicken liver is studied. Nuclear and mitochondrial forms of the enzymes are discovered. The activity of the enzymes studied of carbohydrates metabolism is shown to correlate with that of the enzymes of nucleic metabolism in cytosol, nucleic and mitochondrial liver fractions.  相似文献   

5.
1. Extractable hexokinase activity was measured in the red and white skeletal muscles of the rabbit and in the hearts and diaphragms of four animal species differing markedly in size. Activities vary over a 40-fold range, being least in white skeletal muscle of the laboratory rabbit and greatest in mouse heart. 2. Hexokinase activities correlate approximately with capacities to undertake reactions of the tricarboxylic acid cycle as determined by succinate oxidase assays. Both enzyme activities seem best related to the average contractile-energy expenditure per unit weight of muscle over an extended period, rather than to the rapidity of individual contractions. 3. Hexokinase and succinate oxidase activities cannot be related to a muscle's content of soluble pigment. They display an inverse relationship with activities of phosphorylase and glycolytic enzymes, but only within the group of rabbit skeletal muscles whose oxidative capacities are at the lower end of the observed range. 4. Total glycogen-UDP glucosyltransferase activities do not vary significantly between rabbit skeletal muscles, although those of hexokinase differ by about sixfold. On the average, glucose 6-phosphate is probably oxidized directly. However, observations cited in the literature suggest that muscles with an active hexokinase may well preferentially accumulate glycogen when glucose is present in excess of the fibres' capacity to oxidize it. 5. When considered with published results obtained in vivo, the present findings indicate that phosphorylase has a minor role in the energy expenditure of muscles with a predominantly oxidative metabolism. In these, the major substrates appear to be blood glucose, fatty acids and possibly lipids. 6. The histochemical criteria by which muscle fibres are commonly described as red or white are inadequate.  相似文献   

6.
1. 31P NMR was used to characterize phosphate pools in perchloric acid extracts of muscles with various composition of muscle fibre types. 2. The white m. pectoralis major (MPM) of chickens 15 min post mortem is characterized by 1.6-times higher relative content of phosphocreatine (PCr) in comparison with mixed leg muscle (LM) of this species. The glycerophosphorylcholine (GPC) does not occur in MPM at NMR detectable level in contrast to the leg muscles. Relative amounts of other phosphates are similar in both muscles. 3. The intermediate MPM of pigeons as well as mixed LM of this species contain 15 min post mortem a very small amount of PCr and ATP but a large amount of inorganic phosphate. Relative content of GPC is higher in leg muscles than in intermediate MPM. 4. Muscles with higher occurrence of white fibres contain relatively more PCr than muscles with lower occurrence of white fibres. 5. The occurrence of GPC seems to be connected with metabolism of red muscle fibres.  相似文献   

7.
There is a substantial increase in the activities of phosphorylase, hexokinase, glucose-6-phosphate dehydrogenase and alcohol dehydrogenase in white yam tubers as they age. The high glucose-6-phosphate dehydrogenase activities suggest that the pentose phosphate pathway is important in yam tuber tissue.  相似文献   

8.
Tobacco callus was cultured in light or dark, with or without giberellic acid, and with various carbon sources in the medium, and the growth rate and activities of some enzymes of the Embden-Meyerhof-Parnas and pentose phosphate pathway were determined. No changes in the specific activities of enzymes of either pathway could be correlated with growth but there was a light-dependent stimulation of the pentose phosphate pathway enzymes examined.  相似文献   

9.
The changes in the activity of the pentose phosphate cycle and the malic enzyme produced by the activation or inhibition of different NADPH-consuming pathways have been studied. The inhibition of the fatty acid synthesis by kynurenate produced a decrease in the flux through the pentose phosphate cycle and a diminution in the malic enzyme pathway. The incubation of the adipocytes in the presence of ter-butyl-hydroperoxide, a compound which is metabolized via a NADPH-consuming pathway, produced a big increase in the pentose phosphate cycle and the malic enzyme activities. The regulation of these NADPH-producing pathways by the NADPH/NADP ratio is discussed.  相似文献   

10.
The geographic distribution of the following enzyme systems is described in the rat heart (left and right ventricles) and in different skeletal muscles (soleus, plantaris, and red and white gastrocnemius): xanthine oxidase and dehydrogenase, creatine kinase isoenzymes, lactate dehydrogenase isoenzymes, and the free radical scavenger enzymes superoxide dismutase, glutathione reductase, and glutathione peroxidase. No substantial difference in enzyme activities was observed between the left and right ventricles. Skeletal muscles showed a clear distinction between enzyme activities depending on their composition of oxidative fibers and glycolytic fibers.  相似文献   

11.
Protein biosynthesis is studied in red and white rat shank muscles in vitro. It is found that the incorporation rate of 14C-lysine in red muscle was 2-fold higher than that in white muscle. The difference in the lysine incorporation rate into muscle proteins studied increased with the increase of lysine molar concentration in the incubation medium, which was probably due to a selective protein synthesis activation in the red muscle. A higher level of 14C-lysine incorporation in red muscle proteins was found under similar uptake of the labelled amino acid in both red and white muscles. RNA synthesis rate was the same in both muscles and its inhibition with actinomycin D did not affect the ratio of protein synthesis rates in red and white muscles.  相似文献   

12.
The activities of some glycolytic and associated enzymes have been determined in the muscles of trout and carp to investigate the possibility that the discrepancies previously reported between lactate accumulation and anoxic tolerance in these two fish result from underlying differences in glycolytic potential. Steady state concentrations of certain glycolytic intermediates were also determined in freeze-clamped muscles from tankrested fish. The activities of hexokinase, phosphorylase and phosphofructokinase were approximately 2–3 times lower in carp than trout white muscles. Pyruvate kinase and lactate dehydrogenase activities were 5 times lower in carp white muscle. The lower, broader pH optima of lactate dehydrogenase and pyruvate kinase from carp compared to trout muscles is thought to be correlated with the greater anoxic tolerance of the carp. Glycolytic enzyme profiles were markedly different between the red and white muscles of the rainbow trout but broadly similar, with the exception of hexokinase activity, for the corresponding muscles of the carp. The results are discussed in relation to what is known about anaerobiosis in these two species and the comparative physiology of red and white muscles in fish.  相似文献   

13.
The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose‐5‐phosphate and the amino acid precursor erythrose‐4‐phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron‐rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.  相似文献   

14.
Summary The metabolic and structural differentiation of locomotory muscles of Notothenia rossii has been investigated. In this species sustained locomotion is achieved by sculling with enlarged pectoral fins (labriform locomotion), whilst the segmental myotomal muscle is reserved for burst activity. Red, white and subepidermal fibres can be distinguished in the trunk by histochemical and ultrastructural criteria. The main pectoral muscle (m. adductor profundus) consists entirely of red fibres. These three main fibres types show differences in histochemical staining profiles, capillarization, myofibril shape and packing, and lipid and mitochondrial content. The fractional volume of mitochondria amounts to 38% for pectoral, 30% for red myotomal and 1.9% for white myotomal fibres. Enzyme activities of red pectoral muscle are consistent with a higher potential for aerobic glucose and fatty acid oxidation than for the red myotomal fibres. Mg2+ Ca2+ -myofibrillar ATPase activities are similar for red pectoral and myotomal muscles and approximately half of those white fibres. Specialisations of N. rossii muscles associated with labriform swimming and locomotion at Antarctic temperatures are discussed.  相似文献   

15.
The short-term activation of the pentose phosphate cycle by insulin in rat adipocytes and hepatocytes has been studied. This NADPH-producing pathway is regulated by the activation or inhibition of different NADPH-consuming pathways. The stimulation of the fatty acid synthesis by insulin produced an increase in the flux through the pentose phosphate cycle. Kynurenate produced a decrease in the fatty acid synthesis and, consequently a diminution in the flux through the pentose phosphate cycle. Incubation of adipocytes and hepatocytes in presence of kynurenate (10 mM and 3 mM respectively) and insulin (5 nM), prevents both insulin activation on fatty acid synthesis and pentose phosphate cycle. These results suggest that insulin activates the pentose phosphate cycle through the activation of fatty acid synthesis.  相似文献   

16.
Summary Electromyography has been used to study the recruitment of red, pink and white muscle fibres of the Mirror carp at different swimming speeds. Locomotion below 0.3–0.5 L/S (lengths per second) is achieved primarily by fin movements after which the red myotomal muscle becomes active. Pink muscle fibres are the next type to be recruited at speeds around 1.1–1.5 L/S. White muscle is only used for fast cruising in excess of 2–2.5 L/S and during bursts of acceleration.Studies of the myofibrillar ATPase activities of these muscles have shown a ratio of 124 for the red, pink and white fibres respectively. The myosin low molecular weight components, which are characteristic of the myosin phenotype, have been investigated by SDS polyacrylamide electrophoresis. The light chain patterns of the pink and white muscles were identical and characteristic of the fast myosin phenotype. Red muscle myosin had a light chain pattern characteristic of slow muscles. It would appear that there is a relationship between the speed of contraction of the fibre types and the locomotory speed at which they are recruited.The activities of some enzymes of energy metabolism have also been determined in the three muscle types. Enzymes associated with oxidate metabolism have high, intermediate and low activities in the red, pink and white muscles respectively. Pyruvate kinase and lactate dehydrogenase activities were considerably higher in the pink than in either red or white muscles. It is suggested that the high capacity for anaerobic glycolysis of the pink muscle is associated with its recruitment for sustained effort at swimming speeds above which the fish can no longer meet all its energy requirements by gas exchange at the gills.Abbreviations used EDTA ethylenediamine tetraacetic acid - L/S lengths, sec–1 - LDH Lactate dehydrogenase - PFK phosphofructokinase - SDS sodium dodecyl sulphate - TCA trichloroacetic acid  相似文献   

17.
Protein-mediated fatty acid uptake and intracellular fatty acid activation are key steps in fatty acid metabolism in muscle.We have examined (a) the abundance of fatty acid translocase (FAT/CD36) mRNA (a fatty acid transporter) and long-chain acyl CoA synthetase (FACS1) mRNA in metabolically heterogeneous muscles (soleus (SOL), red (RG) and white gastrocnemius (WG)), and (b) whether FAT/CD36 and FACS1 mRNAs were coordinately upregulated in red (RTA) and white tibialis muscles (WTA) that had been chronically stimulated for varying periods of time (0.25, 1, 6 and 24 h/day) for 7 days. FAT/CD36 mRNA and FACS1 mRNA abundance were scaled with (a) the oxidative capacity of muscle (SOL > RG > WG) (p < 0.05), (b) the rates of fatty acid oxidation in red and white muscles, and (c) fatty acid uptake by sarcolemmal vesicles, derived from red and white muscles. In chronically stimulated muscles (RTA and WTA), FAT/CD36 mRNA and FACS1 mRNA were up-regulated in relation to the quantity of muscle contractile activity (p < 0.05). FAT/CD36 mRNA and FACS1 mRNA up-regulation was highly correlated (r = 0.98). The coordinated expression of FAT/CD36 and FACS is likely a functional adaptive response to facilitate a greater rate of fatty acid activation in response to a greater rate of fatty acid transport, either among different types of muscles or in muscles in which capacity for fatty acid metabolism has been enhanced.  相似文献   

18.
1. Actomyosin extracts of trunk, heart, and head muscles from barbel (Barbus barbus L.) were analyzed by SDS-polyacrylamide gel electrophoresis to study their myosin heavy chain composition. 2. Four heavy chain isoforms were found: trunk white, trunk red, and ventricle muscles yielded one heavy chain typical of the muscle type; head muscles devoid of red fibers displayed two heavy chain isoforms, the slow migrating one corresponding to the trunk white muscle type. 3. The electrophoretic mobility of red and ventricle myosin heavy chains related to that of white isoforms appeared highly modified by the glycerol content of the gels.  相似文献   

19.
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.  相似文献   

20.
The activities of several enzymes of energy metabolism were measured in the heart, red muscle, and white muscle of a deep and a shallow living squaloid shark, Centroscyllium fabricii and Squalus acanthias, respectively. The phylogenetic closeness of these species, combined with their active predatory nature, similar body form, and size makes them well matched for comparison. This is the first time such a comparison has been made involving a deep-sea elasmobranch. Enzyme activities were similar in the heart, but generally lower in the red muscle of C. fabricii. Paralleling the trend seen in deep-sea teleosts, the white muscle of C. fabricii had substantially lower activities of key glycolytic enzymes, pyruvate kinase and lactate dehydrogenase, relative to S. acanthias or other shallow living elasmobranchs. Unexpectedly, between the squaloid sharks examined, creatine phosphokinase activity was higher in all tissues of the deep living C. fabricii. Low white muscle glycolytic enzyme activities in the deep-sea species coupled with high creatine phosphokinase activity suggests that the capacity for short burst swimming is likely limited once creatine phosphate supplies have been exhausted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号