首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
藜科六种耐盐植物遗传多样性的EST-SSR分析   总被引:1,自引:0,他引:1  
利用EST-SSR标记分析了藜科6种耐盐植物的遗传基础和遗传多样性,以期为藜科耐盐植物遗传育种提供快速、可靠的分子标记辅助选择工具.采用31对藜科海蓬子属和碱蓬属的EST-SSR引物对藜科6种植物进行PCR扩增,其中16对引物得到较好扩增,引物通用率为51.6%,共检测到18个多态性位点,每位点等位基因数2~4个,多态性丰富.进一步采用Nei's遗传距离聚类分析表明6种植物可以分为3组,主成分分析也支持上述分组,而且DY529957、DY529903和DY5298853个EST在分组中贡献率最高.经与GenBank中序列相似性比对,前两者分别编码生长素抑制蛋白(Auxin-repressed protein,ARP)和植物防御素(Defensins,Def),都参与植物逆境胁迫响应,但分属于不同代谢途径;后者则编码未知蛋白.总体而言,16对SSR引物在藜科6种植物间具有较好的通用性,能够揭示该6种植物间广泛的遗传多样性,及其存在不同耐盐机制提供分子证据.  相似文献   

2.
藜科植物化学成分与生物活性的研究进展   总被引:1,自引:0,他引:1  
藜科植物广泛分布于干旱和盐碱地区,我国约有38属184种,新疆是我国藜科植物分布最多的地区。藜科植物主要含有生物碱、甾体、萜类和黄酮化合物,其生物活性逐渐受到人们的关注。本文对该科植物的化学成分和生物活性的研究进展进行了综述。  相似文献   

3.
土壤营养匮乏是盐碱地植物生物量的主要限制因子之一,藜科植物是盐碱地的优势类群。为了明晰盐环境中不同藜科植物主要营养元素计量特征及其与矿质土壤环境间的关系差异,本研究以呼伦贝尔4种典型藜科植物——碱蓬(Suaeda glauca)、尖头叶藜(Chenopodium acuminatum)、刺沙蓬(Salsola tragus)、雾冰藜(Bassia dasyphylla)为对象,比较4种藜科植物生境土壤因子和不同器官7种元素计量特征。结果显示:(1)碱蓬种群土壤Na含量和土壤电导率显著高于其他3种藜科植物种群,刺沙蓬种群土壤N含量最低,雾冰藜种群土壤P含量最低。(2)叶片C/N依次为碱蓬种群>刺沙蓬种群>尖头叶藜种群>雾冰藜种群,尖头叶藜种群根C/P显著高于其他3种植物。雾冰藜种群、碱蓬种群和刺沙蓬种群叶N/P>16,除尖头叶藜种群外,3种植物种群根N/P<14。(3)雾冰藜种群具有显著高的叶、茎和根K含量,刺沙蓬种群具有显著高的叶、根Ca含量,碱蓬种群具有显著高的叶、茎和根Na含量,雾冰藜种群具有显著高的叶、根Mg含量。(4)刺沙蓬种群各器官具有显著高的N...  相似文献   

4.
盐碱土区植物可利用营养匮乏是植物生物量限制的主要因素之一,藜科(Chenopodiaceae)植物是盐碱环境中的最大类群,其整体营养策略对盐碱地育种和农业开发具有重要意义。本研究以呼伦贝尔4种典型盐碱地藜科植物碱蓬(Suaeda glauca)、尖头叶藜(Chenopodium acuminatum)、刺沙蓬(Salsola tragus)、雾冰藜(Bassia dasyphylla)为研究对象,通过分析不同器官C、N、P生态化学计量特征,试图揭示藜科植物C、N、P计量特征共性及其与土壤因子之间的耦合关系。结果显示:(1)藜科植物茎、叶N/P>16,根N/P<14;各器官C、N含量显著相关,且根C含量>茎C含量>叶C含量,N含量表现为叶N含量>茎N含量>根N含量,表明N元素从根、茎到叶之间具有良好的转移效率。(2)相对于C元素和N元素,各器官内P元素含量具有最大变异系数,叶P、茎P含量与叶N、根N含量显著正相关,根P含量与叶N、根N含量显著负相关,表明N、P元素在叶和根中具有较强的协调关系。(3)RDA排序表明土壤P是影响植物叶片化学计量的主要因素,...  相似文献   

5.
植物的繁殖系统,遗传结构和遗传多样性保护   总被引:8,自引:1,他引:8  
  相似文献   

6.
孙伟  王德利  王立  杨允菲 《生态学报》2003,23(4):814-819
利用人工模拟光源研究了两种 C4 光合途径禾本科植物 (虎尾草、狗尾草 )和两种 C3光合途径藜科植物 (藜、绿藜 )的光合速率 ( Pn)、蒸腾速率 ( Tr)、水分利用率 ( WUE)、气孔导度 ( Gs)、胞间 CO2 浓度 ( Ci)及叶面饱和蒸气压亏缺 ( Vpdl)随模拟光辐射 ( SPR)增强的变化规律及 Gs、Ci、Vpdl对 Tr和 WUE的影响。结果表明 :( 1 ) 4种植物的 Pn和 Tr均随 SPR增强而增大 ,两种藜科植物最大净 Pn和 Tr均高于两种禾本科植物的最大净 Pn和 Tr。 ( 2 ) WUE随 SPR增强先增大后减小 ,两种禾本科植物和两种藜科植物分别在SPR为 40 0、1 2 0 0 μmol/( m2·s)时达到最大值 ,禾本科植物的最大 WUE明显高于藜科植物。 ( 3) 4种植物的 Gs、Ci均随 SPR的增强而减小 ,两种藜科植物的 Gs和 Ci均显著高于两种禾本科植物。4种植物的 Vpdl均随 SPR增强而增大 ,禾本科植物高于藜科植物。实验表明 ,在以水分为限制因素的半干旱草原区 ,禾本科植物具有更好的保水机制和更高的水分利用效率 ,与藜科植物相比 ,在水分生态上具有一定的竞争优势。  相似文献   

7.
不同干扰类型对高寒草甸群落结构和植物多样性的影响   总被引:45,自引:6,他引:45  
对高寒草甸天然草地进行了施肥、围栏和放牧 中牧和重牧 处理,研究不同干扰类型对草地植物多样性的影响.结果表明,施肥使草地植物群落物种组成贫乏,群落结构趋于简单,物种多样性减少;中等程度放牧增加了群落结构的复杂性,丰富度指数和多样性指数均最高,支持 中度干扰理论 ;重度放牧,由于干扰过于剧烈而减少了物种优势度和多样性;而轻度干扰的围栏草地,群落由少数优势种所统治,多样性也不高.物种数 S 、丰富度指数 Ma 、Shannon-Wiener指数 H' 、Simpson指数 D 的排列顺序均为:施肥草地<围栏草地<重牧草地<中牧草地;均匀度指数 Jsw 的变化趋势与上述各指数相同;优势度指数的变化趋势则相反,为施肥草地>围栏草地>重牧草地>中牧草地.4种干扰类型草地群落的生活型功能群基本一致,均由多年生禾草、多年生杂类草和莎草类组成,但各功能群在群落中所占比重及各功能群内所含物种数则大不相同.说明不同干扰类型对草地植物群落的物种组成、多样性格局及系统功能等方面产生不同的影响.  相似文献   

8.
藜科植物的起源、分化和地理分布   总被引:27,自引:0,他引:27  
全球藜科植物共约130属1500余种,广泛分布于欧亚大陆、南北美洲、非洲和大洋洲的半干旱及盐碱地区。它基本上是一个温带科,对亚热带和寒温带也有一定的适应性。本文分析了该科包含的1l族的系统位置和分布式样,以及各个属的分布区,提出中亚区是现存藜科植物的分布中心,原始的藜科植物在古地中海的东岸即华夏陆台(或中国的西南部)发生,然后向干旱的古地中海沿岸迁移、分化,产生了环胚亚科主要族的原始类群;起源的时间可能在白垩纪初,冈瓦纳古陆和劳亚古陆进一步解体的时期。文章对其迁移途径及现代分布式样形成的原因进行了讨论。  相似文献   

9.
植物器官脱落的激素调控   总被引:11,自引:0,他引:11  
评述国内外关于植物激素调控脱落的研究进展。离区中,激素在转录和翻译水平上调节基因表达控制着水解酶类的合成和分泌。在对应的器官中,激素间的协调和平衡又通过源库关系支配着有机物质的运输而发生间接作用。  相似文献   

10.
 本文应用扫描电镜和光学显微镜对生长在新疆荒漠地区10种藜科植物中亚滨藜(Atriplex centralasiatica),心叶驼绒藜(Ceratoides ewersmanniana),驼绒藜(Ceratoides latens),盐节木(Halocnemum strobilaceum),盐穗木(Halostachys caspica),梭梭(Haloxylon ammodendron),圆叶盐爪爪(Kalidium schrenkianum),绒藜(Londesia eriantha),费尔干猪毛菜(Salsola ferganica),浆果猪毛菜(Salsola foliosa)的叶和同化枝进行了形态解剖学研究。结果表明,它们是通过以下结构来适应旱生和盐生环境的:叶片及角质膜厚,气孔器下陷,具表皮毛;栅栏组织发达,多为等面叶;部分植物叶片退化成鳞片状,而由同化枝执行光合功能;多数植物叶片和同化枝内部具有粘液和含晶细胞,贮水组织发达。根据盐分是否排出体外,又划分出聚盐和泌盐植物。在泌盐植物中,盐腺具有单细胞和多细胞及分泌孔类型,并对其聚盐和泌盐机理作了初步探讨。  相似文献   

11.
Salsola junatovii Botsch. (Chenopodiaceae), a desert shrub endemic to the northern edge of the Taklimakan desert in China, is listed as an endangered species because of its narrow habitat requirements and a decline in numbers of individuals. In order to provide information on conservation strategies, we investigated the genetic patterns and evolutionary history of this species. Two cpDNA spacers, (psbA-trnH and psbK-psbI), and the nrITS sequence were employed in 116 individuals from 15 populations across the whole range of the species. A total of 7 haplotypes and 12 ribotypes were detected. Based on separate BEAST analyses, we suggest that intraspecific differentiation of S. junatovii occurred at 2.284–0.264 Ma for cpDNA haplotypes, and 1.304–0.1 Ma for nrITS ribotypes, both in the Pleistocene. Only mismatch analysis and neutrality tests for nrITS sequences over all populations were indicative of demographic expansion. Inconsistency between results from chloroplast and nuclear sequences was detected, apparently due to a stronger seed-mediated gene flow among populations than pollen-mediated flow under the severe desert conditions. Based on genetic structure results, one population, KMS, with the highest number of unique genotypes, should be a conservation priority; another nine populations containing unique genotypes were suggested for ex situ conservation.  相似文献   

12.
Numbers of species and genera,endemic genera,extant primitive genera,relationship and distribution patterns of presently living Chenopodiaceae(two subfamilies,12 tribes,and 118 genera)are analyzed and compared for eight distributional areas,namely central Asia,Europe,the Mediterranean region,Africa,North America,South America, Australia and East Asia. The Central Asia,where the number of genera and diversity of taxa are greater than in other areas,appears to be the center of distribution of extant Chenopodiaceae.North America and Australia are two secondary centers of distribution. Eurasia has 11 tribes out of the 12,a total of 70 genera of extant chenopodiaceous plants,and it contains the most primitive genera of every tribe. Archiatriplex of Atripliceae,Hablitzia of Hablitzeae,Corispermum of Corispermeae,Camphorosma of Camphorosmaea,Kalidium of Salicornieae,Polecnemum of Polycnemeae,Alexandra of Suaedeae,and Nanophyton of Salsoleae,are all found in Eurasia,The Beteae is an Eurasian endemic tribe,demonstrating the antiquity of the Chenopodiaceae flora of Eurasia.Hence,Eurasia is likely the place of origin of chenopodiaceous plants. The presence of chenopodiaceous plants is correlated with an arid climate.During the Cretaceous Period,most places of the continent of Eurasia were occupied by the ancient precursor to the Mediterranean,the Tethys Sea.At that time the area of the Tethys Sea had a dry and warm climate.Therefore,primitive Chenopodiaceae were likely present on the beaches of this ancient land.This arid climatic condition resulted in differentiation of the tribes Chenopodieae,Atripliceae,Comphorosmeae,Salicornieae,etc.,the main primitive tribes of the subfamily Cyclolobeae. Then following continental drift and the Laurasian and Gondwanan disintegration, the Chenopodiaceae were brought to every continent to propagate and develop, and experience the vicissitudes of climates, forming the main characteristics and distribution patterns of recent continental floras. The tribes Atripliceae, Chenopodieae, Camphorosmeae, and Salicornieae of recent Chenopodiaceae in Eurasia, North America, South America, southern Africa, and Australia all became strongly differentiated. However, Australia and South America, have no genera of Spirolobeae except for a few maritime Suaeda species. The Salsoleae and Suaedeae have not arrived in Australia and South America, which indicates that the subfamily Spirolobeae developed in Eurasia after Australia separated from the ancient South America-Africa continent, and South America had left Africa. The endemic tribe of North America, the tribe Sarcobateae, has a origin different from the tribes Salsoleae and Suaedeae of the subfamily Spirolobeae. Sarcobateae flowers diverged into unisexuality and absence of bractlets. Clearly they originated in North America after North America had left the Eurasian continent. North America and southern Africa have a few species of Salsola, but none of them have become very much differentiated or developed, so they must have arrived through overland migration across ancient continental connections. India has no southern African Chenopodiaceae floristic components except for a few maritime taxa, which shows that when the Indian subcontinent left Africa in the Triassic period, the Chenopodiaceae had not yet developed in Africa. Therefore, the early Cretaceous Period about 120 million years ago, when the ancient Gondwanan and Laurasian continents disintegrated, could have been the time of origin of Chenopodiaceae plants.The Chinese flora of Chenopodiaceae is a part of Chenopodiaceae flora of central Asia. Cornulaca alaschnica was discovered from Gansu, China, showing that the Chinese Chenopodiaceae flora certainly has contact with the Mediterranean Chenopodiaceae flora. The contact of southeastern China with the Australia Chenopodiaceae flora, however, is very weak.  相似文献   

13.
综述了藜科植物三萜皂苷类化学成分以及药理作用方面的研究进展。  相似文献   

14.
Community structure has been widely identified as a feature of many real-world networks. It has been shown that the antigenic diversity of a pathogen population can be significantly affected by the contact network of its hosts; however, the effects of community structure have not yet been explored. Here, we examine the congruence between patterns of antigenic diversity in pathogen populations in neighbouring communities, using both a deterministic metapopulation model and individual-based formulations. We show that the spatial differentiation of the pathogen population can only be maintained at levels of coupling far lower than that necessary for the host populations to remain distinct. Therefore, identifiable community structure in host networks may not reflect differentiation of the processes occurring upon them and, conversely, a lack of genetic differentiation between pathogens from different host communities may not reflect strong mixing between them.  相似文献   

15.
Pollen grains of 50 Chenopodiaceae species were observed under SEM and distincted into 5 morphological types, 6 subtypes. This work suggest that the Chenopodiaceae pollen is distinctable at substructural level.  相似文献   

16.
Pollen morphology of 58 species from 17 putative genera of the tribe Atripliceae (Chenopodiaceae) was investigated using light (LM) and scanning electron microscopy (SEM). Morphological variation was analyzed based on a dense sampling of the subtribes Atriplicinae and Eurotiinae, including many of the species in the two largest genera: Atriplex and Obione. The pantoporate pollen grains of Atripliceae are characterized by their spheroidal or subspheroidal shape, flat or moderately vaulted mesoporia with 21–120 pores, tectum with 1–8 spinules and 5–28(?38) puncta per?µm2, and 1–13 ectexinous bodies bearing 1–7 spinules each. Taxonomic relevance of the most important pollen morphological characters is discussed (pollen diameter, pore number, pore diameter, interporal distance, spinule and puncta density and ratio, number of ectexinous bodies, and their spinules). Pollen morphological data support the exclusion of Suckleya from the tribe and the recognition of subtribe Eurotiinae, but suggest that it needs to be reviewed. Pollen does not support generic recognition of Atriplex, Neopreissia and Obione and infrageneric subdivisions as currently recognized, and suggests the need to review them. Smaller or monotypic genera, such as Axyris, Ceratocarpus, Endolepis, Krascheninnikovia, Microgynoecium, Proatriplex and Spinacia have distinctive pollen morphological characters that support their generic status. Grayia needs to be reevaluated; although its two species are distinct from all the other species in the study, there are notable differences between each of them, and this suggests they may not form a natural group. Multivariate techniques were employed to investigate if there are discrete patterns of variation within Atripliceae. Principal Component Analyses (PCA) weakly differentiates four groups based on variation in pore number, puncta density per?µm2, and ratio between spinule and puncta density per?µm2; species of Ceratocarpus, Haloxanthium, Krascheninnikovia, Manochlamys, Microgynoecium, Spinacia, and some species of Atriplex and Obione are isolated. Preliminary results indicate that pollen data are potentially useful in the classification of the tribe, and further studies will be of taxonomic value.  相似文献   

17.
We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times. Instead, they indicate that most lineages arrived in Australia via long-distance dispersal. Some lineages (e.g. the Halosarcia lineage) may have used the Indonesian archipelagos as stepping stones. The authors are aware that estimates of diversification times using a molecular clock can be subject to considerable levels of error. Our estimates of the age of Australian chenopod lineages based on three alternative fossils were made independently from any knowledge about shifts in climatic and geographical conditions in Australia during the times of arrival. In most cases, however, the paleoclimatic scenario indicates habitat shifts suitable for the respective chenopod colonizer, which corroborates our findings and provides a plausible scenario.  相似文献   

18.
艾纳香野生种群克隆多样性及克隆结构研究   总被引:1,自引:0,他引:1  
艾纳香是具有克隆生长习性的多年生宿根性草本植物,其广布于中国南部,为了更有效地保护和合理利用艾纳香资源,本文利用RAPD分子标记技术,对4个野生艾纳香种群进行了克隆结构和克隆多样性(单克隆种群或多克隆种群)进行了初步研究。结果表明:(1)10对10bp随机引物共检测到70条谱带,其中多态带为60条,占85.71%,检测到64个基因型,且全部为局限基因型;(2)与Ellstrand Roose(1987)总结的克隆多样性平均值(PD=0.17,D=0.62)相比艾纳香的种群克隆多样性水平稍高,Simpson指数平均为0.973,基因型比率PD平均为0.800;(3)遗传一致度和遗传距离分析表明,4个艾纳香野生种群被分成两组,一组是海南的所有种群,另外一组是云南类群。  相似文献   

19.
20.
The structure of diversity in a chironomid community inhabiting submerged macrophytes was analysed, including the relationship between predation/competition and chironomid diversity. Diversity as expressed by the Shannon functionH was found to be strongly associated with equitabilityJ but not with species richnessS in this community. Chironomid species richness was correlated with the abundance of diatoms. DiversityH and equitabilityJ were significantly correlated with chironomid density through the year. Invertebrate predators were generally rare and occurred sporadically throughout the year in this habitat, with only three species (Chaetogaster diaphanus, Rhyacophila dorsalis andZavrelimyia sp.) attaining >25% habitat occupancy. Neither these predators nor non-chironomid competitors encountered in the same habitat (Stylaria lacustris, Ophidonais serpentina, Hydroptila sp.,Simulium spp. andHydropsyche siltalai) appeared to affect diversity measures of the chironomid community under study, apart from a weak tendency of highSimulium density negatively affecting the total chironomid abundance. In conjunction with other analyses, this chironomid community seemed to be stochastically dynamic and was little influenced by biotic factors such as predation and competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号