首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme pyruvate formate-lyase (PFL) from Lactococcus lactis was produced in Escherichia coli and purified to obtain anti-PFL antibodies that were shown to be specific for L. lactis PFL. It was demonstrated that activated L. lactis PFL was sensitive to oxygen, as in E. coli, resulting in the cleavage of the PFL polypeptide. The PFL protein level and its in vivo activity and regulation were shown by Western blotting, enzyme-linked immunosorbent assay, and metabolite measurement to be dependent on the growth conditions. The PFL level during anaerobic growth on the slowly fermentable sugar galactose was higher than that on glucose. This shows that variation in the PFL protein level may play an important role in the regulation of metabolic shift from homolactic to mixed-acid product formation, observed during growth on glucose and galactose, respectively. During anaerobic growth in defined medium, complete activation of PFL was observed. Strikingly, although no formate was produced during aerobic growth of L. lactis, PFL protein was indeed detected under these conditions, in which the enzyme is dispensable due to the irreversible inactivation of PFL by oxygen. In contrast, no oxygenolytic cleavage was detected during aerobic growth in complex medium. This observation may be the result of either an effective PFL deactivase activity or the lack of PFL activation. In E. coli, the PFL deactivase activity resides in the multifunctional alcohol dehydrogenase ADHE. It was shown that in L. lactis, ADHE does not participate in the protection of PFL against oxygen under the conditions analyzed. Our results provide evidence for major differences in the mechanisms of posttranslational regulation of PFL activity in E. coli and L. lactis.  相似文献   

2.
Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of P(i) was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed.  相似文献   

3.
Two strains of Lactococcus lactis ssp. cremoris, MG 1820 and MG 1363, which differed by the presence or absence of the lactose plasmid, respectively, were cultivated in batch-mode fermentation on lactose as carbon substrate. A correlation between the rate of sugar consumption, the growth rate, and the type of metabolism was observed. The MG 1820 strain grew rapidly on lactose and homolactic fermentation occurred. The major regulating factor was the NADH/NAD(+) ratio proportional to the catabolic flux, which inhibited glyceraldehyde-3-phosphate dehydrogenase activity. This control led to an increase in metabolite concentration upstream of this enzyme, glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate, and inhibition of pyruvate formate lyase activity, while lactate dehydrogenase was strongly activated by the high coenzyme ratio. The contrary was observed during growth of the MG 1363 strain. Further investigation during growth of L. lactis ssp. lactis NCDO 2118 on galactose as carbon substrate and on various culture media enabling the growth rate to proceed at various rates demonstrated that the relative flux between catabolism and anabolism was the critical regulating parameter rather than the rate of glycolysis itself. In a minimal medium, where anabolism was strongly limited, the rate of sugar consumption was reduced to a low value to avoid carbon and energy waste. Despite this low sugar consumption rate, the catabolic flux was in excess relative to the anabolic capability and the NADH/NAD+ ratio was high, typical of a situation of nonlimiting catabolism leading to a homolactic metabolism.  相似文献   

4.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio. The flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase led to an increase in the pool concentrations of both glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate and inhibition of pyruvate formate lyase activity. Under such conditions, metabolism was homolactic. Lactose and to a lesser extent galactose supported less rapid growth, with a diminished flux through glycolysis, and a lower NADH/NAD+ ratio. Under such conditions, the major pathway bottleneck was most probably at the level of sugar transport rather than glyceraldehyde-3-phosphate dehydrogenase. Consequently, the pool concentrations of phosphorylated glycolytic intermediates upstream of glyceraldehyde-3-phosphate dehydrogenase decreased. However, the intracellular concentration of fructose-1,6-bisphosphate remained sufficiently high to ensure full activation of lactate dehydrogenase and had no in vivo role in controlling pyruvate metabolism, contrary to the generally accepted opinion. Regulation of pyruvate formate lyase activity by triose phosphates was relaxed, and mixed-acid fermentation occurred (no significant production of lactate on lactose) due mostly to the strong inhibition of lactate dehydrogenase by the in vivo NADH/NAD+ ratio.  相似文献   

5.
A cluster containing five similarly oriented genes involved in the metabolism of galactose via the Leloir pathway in Lactococcus lactis subsp. cremoris MG1363 was cloned and characterized. The order of the genes is galPMKTE, and these genes encode a galactose permease (GalP), an aldose 1-epimerase (GalM), a galactokinase (GalK), a hexose-1-phosphate uridylyltransferase (GalT), and a UDP-glucose 4-epimerase (GalE), respectively. This genetic organization reflects the order of the metabolic conversions during galactose utilization via the Leloir pathway. The functionality of the galP, galK, galT, and galE genes was shown by complementation studies performed with both Escherichia coli and L. lactis mutants. The GalP permease is a new member of the galactoside-pentose-hexuronide family of transporters. The capacity of GalP to transport galactose was demonstrated by using galP disruption mutant strains of L. lactis MG1363. A galK deletion was constructed by replacement recombination, and the mutant strain was not able to ferment galactose. Disruption of the galE gene resulted in a deficiency in cell separation along with the appearance of a long-chain phenotype when cells were grown on glucose as the sole carbon source. Recovery of the wild-type phenotype for the galE mutant was obtained either by genetic complementation or by addition of galactose to the growth medium.  相似文献   

6.
7.
AIMS: To analyse the phenotype of a relA acid-resistant mutant of Lactococcus lactis ssp. cremoris MG1363, and to compare the glyceraldehyde-3-phosphate dehydrogenase regulation in both strains. METHODS AND RESULTS: Lactococcus lactis ssp. cremoris MG1363 and the relA mutant affected in the (p)ppGpp synthetase were grown in a series of batch-mode fermentation at different pH-regulated conditions with glucose as carbon substrate. All the determinants of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regulation were quantified. In L. lactis MG1363, the GAPDH was strongly inhibited in vitro by decreased pH values, but this inhibition was totally compensated in vivo by the lower NADH/NAD+ ratio and more efficiently by the important increase in the intracellular amount of GAPDH. In contrast to the wild type, GAPDH activity of the relA strain was not increased when grown at low pH but the level of GAPDH remained constitutively high. However, pH homeostasis was not improved in the relA mutant and it grew slower and exhibited a lower glycolytic flux than the wild-type strain at low pH. CONCLUSIONS: Despite a better resistance to acid stress, the increased survival in L. lactis relA mutant at low pH was not related with an improved pH homeostasis but was associated with a diminished capacity to maintain a high flux through glycolysis. SIGNIFICANCE AND IMPACT OF THE STUDY: The phenotype of a strong acid-resistant L. lactis strain was established in acid conditions and some key metabolic parameters compared with the wild type. This analysis led to the conclusion that growth and survival seem to be antinomic parameters, since improving one of them leads to a decrease in the other one.  相似文献   

8.
NADH oxidase-overproducing Lactococcus lactis strains were constructed by cloning the Streptococcus mutans nox-2 gene, which encodes the H2O-forming NADH oxidase, on the plasmid vector pNZ8020 under the control of the L. lactis nisA promoter. This engineered system allowed a nisin-controlled 150-fold overproduction of NADH oxidase at pH 7.0, resulting in decreased NADH/NAD ratios under aerobic conditions. Deliberate variations on NADH oxidase activity provoked a shift from homolactic to mixed-acid fermentation during aerobic glucose catabolism. The magnitude of this shift was directly dependent on the level of NADH oxidase overproduced. At an initial growth pH of 6.0, smaller amounts of nisin were required to optimize NADH oxidase overproduction, but maximum NADH oxidase activity was twofold lower than that found at pH 7.0. Nonetheless at the highest induction levels, levels of pyruvate flux redistribution were almost identical at both initial pH values. Pyruvate was mostly converted to acetoin or diacetyl via α-acetolactate synthase instead of lactate and was not converted to acetate due to flux limitation through pyruvate dehydrogenase. The activity of the overproduced NADH oxidase could be increased with exogenously added flavin adenine dinucleotide. Under these conditions, lactate production was completely absent. Lactate dehydrogenase remained active under all conditions, indicating that the observed metabolic effects were only due to removal of the reduced cofactor. These results indicate that the observed shift from homolactic to mixed-acid fermentation under aerobic conditions is mainly modulated by the level of NADH oxidation resulting in low NADH/NAD+ ratios in the cells.  相似文献   

9.
The influence of growth conditions on product formation from glucose by Lactococcus lactis strain NZ9800 engineered for NADH-oxidase overproduction was examined. In aerobic batch cultures, a large production of acetoin and diacetyl was found at acidic pH under pH-unregulated conditions. However, pyruvate flux was mainly driven towards lactate production when these cells were grown under strictly pH-controlled conditions. A decreased NADH-oxidase overproduction accompanied the homolactic fermentation, suggesting that the cellular energy was used with preference to maintain cellular homeostasis rather than for NADH-oxidase overproduction. The end product formation and NADH-oxidase activity were also studied in cells grown in aerobic continuous cultures under acidic conditions. A homoacetic type of fermentation as well as a low NADH-oxidase overproduction were observed at low dilution rates. NADH-oxidase was efficiently overproduced as the dilution rate was increased and consequently metabolic flux through lactate dehydrogenase drastically decreased. Under these conditions the flux limitation via pyruvate dehydrogenase was relieved and this enzymatic complex accommodated most of the pyruvate flux. Pyruvate was also significantly converted to acetoin and diacetyl via alpha-acetolactate synthase. At higher dilution rates, acetate production declined and the cultures turned to mixed-acid fermentation. These results suggest that the need to maintain the cellular homeostasis influenced NADH-oxidase overproduction and consequently the end product formation from glucose in these engineered strains.  相似文献   

10.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.  相似文献   

11.
The use of the food-grade bacterium Lactococcus lactis as a DNA delivery vehicle at the mucosal level is an attractive DNA vaccination strategy. Previous experiments showed that recombinant L. lactis expressing the Listeria monocytogenes inlA gene can deliver a functional gene into mammalian cells. Here, we explored the potential use of noninvasive L. lactis strains as a DNA delivery vehicle. We constructed two Escherichia coli-L. lactis shuttle plasmids, pLIG:BLG1 and pLIG:BLG2, containing a eukaryotic expression cassette with the cDNA of bovine beta-lactoglobulin (BLG). The greatest BLG expression after transfection of Cos-7 cells was obtained with pLIG:BLG1, which was then used to transform L. lactis MG1363. The resulting L. lactis strain MG1363(pLIG:BLG1) was not able to express BLG. The potential of L. lactis as a DNA delivery vehicle was analyzed by detection of BLG in Caco-2 human colon carcinoma cells after 3 h of coincubation with (i) purified pLIG:BLG1, (ii) MG1363(pLIG:BLG1), (iii) a mix of MG1363(pLIG) and purified pLIG:BLG1, and (iv) MG1363. Both BLG cDNA and BLG expression were detected only in Caco-2 cells coincubated with MG1363(pLIG:BLG1). There was a decrease in the BLG cDNA level in Caco-2 cells between 24 and 48 h after coincubation. BLG expression by Caco-2 cells started at 24 h and increased between 24 and 72 h. BLG secretion by Caco-2 cells started 48 h after coincubation with MG1363(pLIG:BLG1). We conclude that lactococci can deliver BLG cDNA into mammalian epithelial cells, demonstrating their potential to deliver in vivo a DNA vaccine.  相似文献   

12.
The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis in continuous cultures subjected to step changes in dilution rate. Both shift-up and shift-down experiments were carried out, and these experiments showed that the enzyme pyruvate formate-lyase (PFL) plays a key role in the regulation of the shift. Pyruvate formate-lyase in vivo activity was regulated both at the level of gene expression and by allosteric modulation of the enzyme. A simple mathematical model was proposed to estimate the relative significance of the regulatory mechanisms involved.  相似文献   

13.
14.
A series of mutant strains of Lactococcus lactis were constructed with lactate dehydrogenase (LDH) activities ranging from below 1% to 133% of the wild-type activity level. The mutants with 59% to 133% of lactate dehydrogenase activity had growth rates similar to the wild-type and showed a homolactic pattern of fermentation. Only after lactate dehydrogenase activity was reduced ninefold compared to the wild-type was the growth rate significantly affected, and the ldh mutants started to produce mixed-acid products (formate, acetate, and ethanol in addition to lactate). Flux control coefficients were determined and it was found that lactate dehydrogenase exerted virtually no control on the glycolytic flux at the wild-type enzyme level and also not on the flux catalyzed by the enzyme itself, i.e. on the lactate production. As expected, the flux towards the mixed-acid products was strongly enhanced in the strain deleted for lactate dehydrogenase. What is more surprising is that the enzyme had a strong negative control ( CLDHJF1 =-1.3) on the flux to formate at the wild-type level of lactate dehydrogenase. Furthermore, we showed that L. lactis has limited excess of capacity of lactate dehydrogenase, only 70% more than needed to catalyze the lactate flux in the wild-type cells.  相似文献   

15.
The involvement of nicotinamide adenine nucleotides (NAD(+), NADH) in the regulation of glycolysis in Lactococcus lactis was investigated by using (13)C and (31)P NMR to monitor in vivo the kinetics of the pools of NAD(+), NADH, ATP, inorganic phosphate (P(i)), glycolytic intermediates, and end products derived from a pulse of glucose. Nicotinic acid specifically labeled on carbon 5 was synthesized and used in the growth medium as a precursor of pyridine nucleotides to allow for in vivo detection of (13)C-labeled NAD(+) and NADH. The capacity of L. lactis MG1363 to regenerate NAD(+) was manipulated either by turning on NADH oxidase activity or by knocking out the gene encoding lactate dehydrogenase (LDH). An LDH(-) deficient strain was constructed by double crossover. Upon supply of glucose, NAD(+) was constant and maximal (approximately 5 mm) in the parent strain (MG1363) but decreased abruptly in the LDH(-) strain both under aerobic and anaerobic conditions. NADH in MG1363 was always below the detection limit as long as glucose was available. The rate of glucose consumption under anaerobic conditions was 7-fold lower in the LDH(-) strain and NADH reached high levels (2.5 mm), reflecting severe limitation in regenerating NAD(+). However, under aerobic conditions the glycolytic flux was nearly as high as in MG1363 despite the accumulation of NADH up to 1.5 mm. Glyceraldehyde-3-phosphate dehydrogenase was able to support a high flux even in the presence of NADH concentrations much higher than those of the parent strain. We interpret the data as showing that the glycolytic flux in wild type L. lactis is not primarily controlled at the level of glyceraldehyde-3-phosphate dehydrogenase by NADH. The ATP/ADP/P(i) content could play an important role.  相似文献   

16.
The bacteriocin produced by Lactococcus lactis IFPL105 is bactericidal against several Lactococcus and Lactobacillus strains. Addition of the bacteriocin to exponential-growth-phase cells resulted in all cases in bacteriolysis. The bacteriolytic response of the strains was not related to differences in sensitivity to the bacteriocin and was strongly reduced in the presence of autolysin inhibitors (Co(2+) and sodium dodecyl sulfate). When L. lactis MG1363 and its derivative deficient in the production of the major autolysin AcmA (MG1363acmADelta1) were incubated with the bacteriocin, the latter did not lyse and no intracellular proteins were released into the medium. Incubation of cell wall fragments of L. lactis MG1363, or of L. lactis MG1363acmADelta1 to which extracellular AcmA was added, in the presence or absence of the bacteriocin had no effect on the speed of cell wall degradation. This result indicates that the bacteriocin does not degrade cell walls, nor does it directly activate the autolysin AcmA. The autolysin was also responsible for the observed lysis of L. lactis MG1363 cells during incubation with nisin or the mixture of lactococcins A, B, and M. The results presented here show that lysis of L. lactis after addition of the bacteriocins is caused by the resulting cell damage, which promotes uncontrolled degradation of the cell walls by AcmA.  相似文献   

17.
18.
Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of Pi was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed.  相似文献   

19.
alpha-Phosphoglucomutase (alpha-PGM) plays an important role in carbohydrate metabolism by catalyzing the reversible conversion of alpha-glucose 1-phosphate to glucose 6-phosphate. Isolation of alpha-PGM activity from cell extracts of Lactococcus lactis strain MG1363 led to the conclusion that this activity is encoded by yfgH, herein renamed pgmH. Its gene product has no sequence homology to proteins in the alpha-d-phosphohexomutase superfamily and is instead related to the eukaryotic phosphomannomutases within the haloacid dehalogenase superfamily. In contrast to known bacterial alpha-PGMs, this 28-kDa enzyme is highly specific for alpha-glucose 1-phosphate and glucose 6-phosphate and showed no activity for mannose phosphate. To elucidate the function of pgmH, the metabolism of glucose and galactose was characterized in mutants overproducing or with a deficiency of alpha-PGM activity. Overproduction of alpha-PGM led to increased glycolytic flux and growth rate on galactose. Despite several attempts, we failed to obtain a deletion mutant of pgmH. The essentiality of this gene was proven by using a conditional knock-out strain in which a native copy of the gene was provided in trans under the control of the nisin promoter. Growth of this strain was severely impaired when alpha-PGM activity was below the control level. We show that the novel L. lactis alpha-PGM is the only enzyme that mediates the interconversion of alpha-glucose 1-phosphate to glucose 6-phosphate and is essential for growth.  相似文献   

20.
The sequence of the genome from the Lactococcus lactis subspecies lactis strain IL1403 shows the presence of two reading frames, gapA and gapB, putatively encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Previous proteomic analysis of the L. lactis subspecies cremoris strain MG1363 has revealed two neighbouring protein spots, GapBI and GapBII, with amino terminal sequences identical to the product of gapA from the L. lactis subspecies cremoris strain LM0230 and that of the two IL1403 sequences. In order to assign the two protein spots to their respective genes we constructed an L. lactis strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG1363 and the gapA overexpressing strain the GAPDH activity was specific for NAD. No NADP dependent activity was detected. Proteome analysis of the gapA overexpressing strain revealed two new protein spots, GapAI and GapAII, not previously detected in proteome analysis of MG1363. Results from mass spectrometry analysis of GapA and GapB and comparison with the deduced protein sequences for the GAPDH isozymes from the genome sequence of strain IL1403 allowed us to assign GapA and GapB to their apparent IL1403 homologues encoded by gapA and gapB, respectively. Furthermore, we suggest that a homologue of a gapB product, represented by GapB, is the main source of GAPDH activity in L. lactis during normal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号