首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucokinase (GK) has several known polymorphic activating mutations that increase the enzyme activity by enhancing glucose binding affinity and/or by alleviating the inhibition of glucokinase regulatory protein (GKRP), a key regulator of GK activity in the liver. Kinetic studies were undertaken to better understand the effect of these mutations on the enzyme mechanism of GK activation and GKRP regulation and to relate the enzyme properties to the associated clinical phenotype of hypoglycemia. Similar to wild type GK, the transient kinetics of glucose binding for activating mutations follows a general two-step mechanism, the formation of an enzyme-glucose complex followed by an enzyme conformational change. However, the kinetics for each step differed from wild type GK and could be grouped into specific types of kinetic changes. Mutations T65I, Y214C, and A456V accelerate glucose binding to the apoenzyme form, whereas W99R, Y214C, and V455M facilitate enzyme isomerization to the active form. Mutations that significantly enhance the glucose binding to the apoenzyme also disrupt the protein-protein interaction with GKRP to a large extent, suggesting these mutations may adopt a more compact conformation in the apoenzyme favorable for glucose binding. Y214C is the most active mutation (11-fold increase in k(cat)/K(0.5)(h)) and exhibits the most severe clinical effects of hypoglycemia. In contrast, moderate activating mutation A456V nearly abolishes the GKRP inhibition (76-fold increase in K(i)) but causes only mild hypoglycemia. This suggests that the alteration in GK enzyme activity may have a more profound biological impact than the alleviation of GKRP inhibition.  相似文献   

2.
GK (glucokinase) is activated by glucose binding to its substrate site, is inhibited by GKRP (GK regulatory protein) and stimulated by GKAs (GK activator drugs). To explore further the mechanisms of these processes we studied pure recombinant human GK (normal enzyme and a selection of 31 mutants) using steady-state kinetics of the enzyme and TF (tryptophan fluorescence). TF studies of the normal binary GK-glucose complex corroborate recent crystallography studies showing that it exists in a closed conformation greatly different from the open conformation of the ligand-free structure, but indistinguishable from the ternary GK-glucose-GKA complex. GKAs did activate and GKRP did inhibit normal GK, whereas its TF was doubled by glucose saturation. However, the enzyme kinetics, GKRP inhibition, TF enhancement by glucose and responsiveness to GKA of the selected mutants varied greatly. Two predominant response patterns were identified accounting for nearly all mutants: (i) GK mutants with a normal or close to normal response to GKA, normally low basal TF (indicating an open conformation), some variability of kinetic parameters (k(cat), glucose S(0.5), h and ATP K(m)), but usually strong GKRP inhibition (13/31); and (ii) GK mutants that are refractory to GKAs, exhibit relatively high basal TF (indicating structural compaction and partial closure), usually show strongly enhanced catalytic activity primarily due to lowering of the glucose S(0.5), but with reduced or no GKRP inhibition in most cases (14/31). These results and those of previous studies are best explained by envisioning a common allosteric regulator region with spatially non-overlapping GKRP- and GKA-binding sites.  相似文献   

3.
In the liver, glucokinase (GK) regulatory protein (GKRP) negatively modulates the metabolic enzyme GK by locking it in an inactive state in the nucleus. Here, the authors established a high content screening assay in the 384-well microplate format to measure the nucleus-to-cytoplasm translocation of GK by reagents that destabilize the interaction between GK and GKRP. As a cellular model system, primary rat hepatocytes endogenously expressing both GK and GKRP at physiological levels were used. The GK translocation assay was robust, displayed limited day-to-day variability, and delivered good Z' statistics. The increase of the glucose concentration in the extracellular medium from a low glucose situation (2.8 mM) to beyond its physiological set point value of 5 mM was found to drive GK from the nucleus into the cytoplasm. Likewise, both fructose (converted intracellularly into fructose-1-phosphate) and a known allosteric GK activator were found to induce the export of GK from the nucleus and to synergistically enhance the effects of medium or high glucose concentrations with respect to GK translocation. Transfer of the high content screening format to a semiautomated medium throughput screening platform enabled the profiling of large compound numbers with respect to allosteric activation of GK.  相似文献   

4.
GK (glucokinase) is an enzyme central to glucose metabolism that displays positive co-operativity to substrate glucose. Small-molecule GKAs (GK activators) modulate GK catalytic activity and glucose affinity and are currently being pursued as a treatment for Type 2 diabetes. GK progress curves monitoring product formation are linear up to 1 mM glucose, but biphasic at 5 mM, with the transition from the lower initial velocity to the higher steady-state velocity being described by the rate constant kact. In the presence of a liver-specific GKA (compound A), progress curves at 1 mM glucose are similar to those at 5 mM, reflecting activation of GK by compound A. We show that GKRP (GK regulatory protein) is a slow tight-binding inhibitor of GK. Analysis of progress curves indicate that this inhibition is time dependent, with apparent initial and final Ki values being 113 and 12.8 nM respectively. When GK is pre-incubated with glucose and compound A, the inhibition observed by GKRP is time dependent, but independent of GKRP concentration, reflecting the GKA-controlled transition between closed and open GK conformations. These data are supported by cell-based imaging data from primary rat hepatocytes. This work characterizes the modulation of GK by a novel GKA that may enable the design of new and improved GKAs.  相似文献   

5.
Glucokinase (GK) is a key enzyme of glucose metabolism in liver and pancreatic beta-cells, and small molecule activators of GK (GKAs) are under evaluation for the treatment of type 2 diabetes. In liver, GK activity is controlled by the GK regulatory protein (GKRP), which forms an inhibitory complex with the enzyme. Here, we performed isothermal titration calorimetry and surface plasmon resonance experiments to characterize GK-GKRP binding and to study the influence that physiological and pharmacological effectors of GK have on the protein-protein interaction. In the presence of fructose-6-phosphate, GK-GKRP complex formation displayed a strong entropic driving force opposed by a large positive enthalpy; a negative change in heat capacity was observed (Kd = 45 nm, DeltaH = 15.6 kcal/mol, TDeltaS = 25.7 kcal/mol, DeltaCp = -354 cal mol(-1) K(-1)). With k(off) = 1.3 x 10(-2) s(-1), the complex dissociated quickly. The thermodynamic profile suggested a largely hydrophobic interaction. In addition, effects of pH and buffer demonstrated the coupled uptake of one proton and indicated an ionic contribution to binding. Glucose decreased the binding affinity between GK and GKRP. This decrease was potentiated by an ATP analogue. Prototypical GKAs of the amino-heteroaryl-amide type bound to GK in a glucose-dependent manner and impaired the association of GK with GKRP. This mechanism might contribute to the antidiabetic effects of GKAs.  相似文献   

6.
Human hexokinase enzyme IV (EC 2.7.1.1) catalyzes the phosphorylation of glucose and regulates the level of glucose. This enzyme exhibits strong positive cooperativity due to an allosteric transition between an inactive form and a closed active form. This form can be stabilized by activators and, thus, can increase its turnover by a kinetic memory effect characterized by a slow decay to the inactive state. The structural details of this kinetic allostery are known. Several synthetic activators have been reported. We present a preliminary nuclear magnetic resonance (NMR) screening of a chemical library in search of molecules with some affinity for glucokinase (GK). The library, composed of eight molecules with known activity as well as molecules that display no interaction, has been tested using the FAXS (fluorine chemical shift anisotropy and exchange for screening) method, based on monitoring the R2 relaxation of the 19F spin. To ensure a valid interaction measurement, the enzyme was placed in the presence of glucose and magnesium. The binding signal of one known fluorinated ligand was measured by determining the displacement of the known ligand. This simple measure of the 19F signal intensity after an 80-ms spin echo correlates nicely with the EC50, opening a route for NMR screening of GK activators.  相似文献   

7.
Glucokinase (GK) plays a key role in the control of blood glucose homeostasis. We identified a small molecule GK activator, compound A, that increased the glucose affinity and maximal velocity (V(max)) of GK. Compound A augmented insulin secretion from isolated rat islets and enhanced glucose utilization in primary cultured rat hepatocytes. In rat oral glucose tolerance tests, orally administrated compound A lowered plasma glucose elevation with a concomitant increase in plasma insulin and hepatic glycogen. In liver, GK activity is acutely controlled by its association to the glucokinase regulatory protein (GKRP). In order to decipher the molecular aspects of how GK activator affects the shuttling of GK between nucleus and cytoplasm, the effect of compound A on GK-GKRP interaction was further investigated. Compound A increased the level of cytoplasmic GK in both isolated rat primary hepatocytes and the liver tissues from rats. Experiments in a cell-free system revealed that compound A interacted with glucose-bound free GK, thereby impairing the association of GK and GKRP. On the other hand, compound A did not bind to glucose-unbound GK or GKRP-associated GK. Furthermore, we found that glucose-dependent GK-GKRP interaction also required ATP. Given the combined prominent role of GK on insulin secretion and hepatic glucose metabolism where the GK-GKRP mechanism is involved, activation of GK has a new therapeutic potential in the treatment of type 2 diabetes.  相似文献   

8.
Glucokinase has a very high flux control coefficient (greater than unity) on glycogen synthesis from glucose in hepatocytes (Agius et al., J. Biol. Chem. 271, 30479-30486, 1996). Hepatic glucokinase is inhibited by a 68-kDa glucokinase regulatory protein (GKRP) that is expressed in molar excess. To establish the relative control exerted by glucokinase and GKRP, we applied metabolic control analysis to determine the flux control coefficient of GKRP on glucose metabolism in hepatocytes. Adenovirus-mediated overexpression of GKRP (by up to 2-fold above endogenous levels) increased glucokinase binding and inhibited glucose phosphorylation, glycolysis, and glycogen synthesis over a wide range of concentrations of glucose and sorbitol. It decreased the affinity of glucokinase translocation for glucose and increased the control coefficient of glucokinase on glycogen synthesis. GKRP had a negative control coefficient of glycogen synthesis that is slightly greater than unity (-1.2) and a control coefficient on glycolysis of -0.5. The control coefficient of GKRP on glycogen synthesis decreased with increasing glucokinase overexpression (4-fold) at elevated glucose concentration (35 mM), which favors dissociation of glucokinase from GKRP, but not at 7.5 mM glucose. Under the latter conditions, glucokinase and GKRP have large and inverse control coefficients on glycogen synthesis, suggesting that a large component of the positive control coefficient of glucokinase is counterbalanced by the negative coefficient of GKRP. It is concluded that glucokinase and GKRP exert reciprocal control; therefore, mutations in GKRP affecting the expression or function of the protein may impact the phenotype even in the heterozygote state, similar to glucokinase mutations in maturity onset diabetes of the young type 2. Our results show that the mechanism comprising glucokinase and GKRP confers a markedly extended responsiveness and sensitivity to changes in glucose concentration on the hepatocyte.  相似文献   

9.
Characterization of glucokinase regulatory protein-deficient mice   总被引:3,自引:0,他引:3  
The glucokinase regulatory protein (GKRP) inhibits glucokinase competitively with respect to glucose by forming a protein-protein complex with this enzyme. The physiological role of GKRP in controlling hepatic glucokinase activity was addressed using gene targeting to disrupt GKRP gene expression. Heterozygote and homozygote knockout mice have a substantial decrease in hepatic glucokinase expression and enzymatic activity as measured at saturating glucose concentrations when compared with wild-type mice, with no change in basal blood glucose levels. Interestingly, when assayed under conditions to promote the association between glucokinase and GKRP, liver glucokinase activity in wild-type and null mice displayed comparable glucose phosphorylation capacities at physiological glucose concentrations (5 mM). Thus, despite reduced hepatic glucokinase expression levels in the null mice, glucokinase activity in the liver homogenates was maintained at nearly normal levels due to the absence of the inhibitory effects of GKRP. However, following a glucose tolerance test, the homozygote knockout mice show impaired glucose clearance, indicating that they cannot recruit sufficient glucokinase due to the absence of a nuclear reserve. These data suggest both a regulatory and a stabilizing role for GKRP in maintaining adequate glucokinase in the liver. Furthermore, this study provides evidence for the important role GKRP plays in acutely regulating of hepatic glucose metabolism.  相似文献   

10.
Heredia VV  Thomson J  Nettleton D  Sun S 《Biochemistry》2006,45(24):7553-7562
The transient kinetics of glucose binding to glucokinase (GK) was studied using stopped-flow fluorescence spectrophotometry to investigate the underlying mechanism of positive cooperativity of monomeric GK with glucose. Glucose binding to GK was shown to display biphasic kinetics that fit best to a reversible two-step mechanism. GK initially binds glucose to form a transient intermediate, namely, E* x glucose, followed by a conformational change to a catalytically competent E x glucose complex. The microscopic rate constants for each step were determined as follows: on rate k1 of 557 M(-1) s(-1) and off rate k(-1) of 8.1 s(-1) for E* x glucose formation, and forward rate k2 of 0.45 s(-1) and reverse rate k(-2) of 0.28 s(-1) for the conformational change from E* x glucose to E x glucose. These results suggest that the enzyme conformational change induced by glucose binding is a reversible, slow event that occurs outside the catalytic cycle (kcat = 38 s(-1)). This slow transition between the two enzyme conformations modulated by glucose likely forms the kinetic foundation for the allosteric regulation. Furthermore, the kinetics of the enzyme conformational change was altered in favor of E x glucose formation in D2O, accompanied by a decrease in cooperativity with glucose (Hill slope of 1.3 in D2O vs 1.7 in H2O). The deuterium solvent isotope effects confirm the role of the conformational change in the magnitude of glucose cooperativity. Similar studies were conducted with GK activating mutation Y214C at the allosteric activator site that is likely involved in the protein domain rearrangement associated with glucose binding. The mutation enhanced equilibrium glucose binding by a combination of effects on both the formation of E* x glucose and an enzyme conformational change to E x glucose. Kinetic simulation by KINSIM supports the conclusion that the kinetic cooperativity of GK arises from slow glucose-induced conformational changes in GK.  相似文献   

11.
Cooperativity with glucose is a key feature of human glucokinase (GK), allowing its crucial role as a glucose sensor in hepatic and pancreatic cells. We studied the changes in enzyme intrinsic tryptophan fluorescence induced by binding of different ligands to this monomeric enzyme using stopped-flow and equilibrium binding methods. Glucose binding data under pre-steady state conditions suggest that the free enzyme in solution is in a preexisting equilibrium between at least two conformers (super-open and open) which differ in their affinity for glucose (Kd* = 0.17 +/- 0.02 mM and Kd = 73 +/- 18 mM). Increasing the glucose concentration changes the ratio of the two conformers, thus yielding an apparent Kd of 3 mM (different from a Km of 7-10 mM). The rates of conformational transitions of free and GK complexed with sugar are slow and during catalysis are most likely affected by ATP binding, phosphate transfer, and product release steps to allow the kcat to be 60 s-1. The ATP analogue PNP-AMP binds to free GK (super-open) and GK-glucose (open) complexes with comparable affinities (Kd = 0.23 +/- 0.02 and 0.19 +/- 0.08 mM, respectively). However, cooperativity with PNP-AMP observed under equilibrium binding conditions in the presence of glucose (Hill slope of 1.6) is indicative of further complex tightening to the closed conformation. Another physiological modulator (inhibitor), palmitoyl-CoA, binds to GK with similar characteristics, suggesting that conformational changes induced upon ligand binding are not restricted by an active site ligand. In conclusion, our data support control of GK activity and Km through the ratio of distinct conformers (super-open, open, and closed) through either substrate or other ligand binding and/or dissociation.  相似文献   

12.
Hepatic glucokinase (GK) moves between the nucleus and cytoplasm in response to metabolic alterations. Here, using heterologous cell systems, we have found that at least two different mechanisms are involved in the intracellular movement of GK. In the absence of the GK regulatory protein (GKRP) GK resides only in the cytoplasm. However, in the presence of GKRP, GK moves to the nucleus and resides there in association with this protein until changes in the metabolic milieu prompt its release. GK does not contain a nuclear localization signal sequence and does not enter the nucleus in a GKRP-independent manner because cells treated with leptomycin B, a specific inhibitor of leucine-rich NES-dependent nuclear export, do not accumulate GK in the nucleus. Instead, entry of GK into the nucleus appears to occur via a piggy-back mechanism that involves binding to GKRP. Nuclear export of GK, which occurs after its release from GKRP, is due to a leucine-rich nuclear export signal within the protein ((300)ELVRLVLLKLV(310)). Thus, GKRP appears to function as both a nuclear chaperone and metabolic sensor and is a critical component of a hepatic GK translocation cycle for regulating the activity of this enzyme in response to metabolic alterations.  相似文献   

13.
Glucokinase (GK) is an enzyme that catalyzes the ATP-dependent phosphorylation of glucose to form glucose-6-phosphate, and it is a tightly regulated checkpoint in glucose homeostasis. GK is known to undergo substantial conformational changes upon glucose binding. The monomeric enzyme possesses a highly exotic kinetic activity profile with an unusual sigmoidal dependence on glucose concentration. In this interdisciplinary study, which draws on small angle X-ray scattering (SAXS) integrated with 250?ns of atomistic molecular dynamics (MD) simulations and experimental glucose binding thermodynamics, we reveal that the critical regulation of this glucose sensor is due to a solvent controlled “switch”. We demonstrate that the “solvent switch” is driven by specific protein structural dynamics, which leads to an enzyme structure that has a much more favorable solvation energy than most of the protein ensemble. These findings uncover the physical workings of an agile and flexible protein scaffold, which derives its long-range allosteric control through specific regions with favorable solvation energy. The physiological framework presented herein provides insights that have direct implications for the design of small molecule GK activators as anti-diabetes therapeutics as well as for understanding how proteins can be designed to have built-in regulatory functions via solvation energy dynamics.  相似文献   

14.
Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s−1 vs 47.86±2.78 s−1) is balanced by an increased glucose affinity (S0.5 = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing.  相似文献   

15.
Glucokinase activity is a major determinant of hepatic glucose metabolism and blood glucose homeostasis. Liver glucokinase activity is regulated acutely by adaptive translocation between the nucleus and the cytoplasm through binding and dissociation from its regulatory protein (GKRP) in the nucleus. Whilst the effect of glucose on this mechanism is well established, the role of hormones in regulating glucokinase location and its interaction with binding proteins remains unsettled. Here we show that treatment of rat hepatocytes with 25 mM glucose caused decreased binding of glucokinase to GKRP, translocation from the nucleus and increased binding to 6-phosphofructo 2-kinase/fructose 2,6 bisphosphatase-2 (PFK2/FBPase2) in the cytoplasm. Glucagon caused dissociation of glucokinase from PFK2/FBPase2, concomitant with phosphorylation of PFK2/FBPase2 on Ser-32, uptake of glucokinase into the nucleus and increased interaction with GKRP. Two novel glucagon receptor antagonists attenuated the action of glucagon. This establishes an unequivocal role for hormonal control of glucokinase translocation. Given that glucagon excess contributes to the pathogenesis of diabetes, glucagon may play a role in the defect in glucokinase translocation and activity evident in animal models and human diabetes.  相似文献   

16.
Glucokinase (GCK) serves as the pancreatic glucose sensor. Heterozygous inactivating GCK mutations cause hyperglycemia, whereas activating mutations cause hypoglycemia. We studied the GCK V62M mutation identified in two families and co-segregating with hyperglycemia to understand how this mutation resulted in reduced function. Structural modeling locates the mutation close to five naturally occurring activating mutations in the allosteric activator site of the enzyme. Recombinant glutathionyl S-transferase-V62M GCK is paradoxically activated rather than inactivated due to a decreased S0.5 for glucose compared with wild type (4.88 versus 7.55 mM). The recently described pharmacological activator (RO0281675) interacts with GCK at this site. V62M GCK does not respond to RO0281675, nor does it respond to the hepatic glucokinase regulatory protein (GKRP). The enzyme is also thermally unstable, but this lability is apparently less pronounced than in the proven instability mutant E300K. Functional and structural analysis of seven amino acid substitutions at residue Val62 has identified a non-linear relationship between activation by the pharmacological activator and the van der Waals interactions energies. Smaller energies allow a hydrophobic interaction between the activator and glucokinase, whereas larger energies prohibit the ligand from fitting into the binding pocket. We conclude that V62M may cause hyperglycemia by a complex defect of GCK regulation involving instability in combination with loss of control by a putative endogenous activator and/or GKRP. This study illustrates that mutations that cause hyperglycemia are not necessarily kinetically inactivating but may exert their effects by other complex mechanisms. Elucidating such mechanisms leads to a deeper understanding of the GCK glucose sensor and the biochemistry of beta-cells and hepatocytes.  相似文献   

17.
Glucose is a main energy source for normal brain functions. Glucokinase (GK) plays an important role in glucose metabolism as a glucose sensor, and GK activity is modulated by glucokinase regulatory protein (GKRP). In this study, we examined the changes of GK and GKRP immunoreactivities in the gerbil hippocampus after 5 min of transient global cerebral ischemia. In the sham-operated-group, GK and GKRP immunoreactivities were easily detected in the pyramidal neurons of the stratum pyramidale of the hippocampus. GK and GKRP immunoreactivities in the pyramidal neurons were distinctively decreased in the hippocampal CA1 region (CA), not CA2/3, 3 days after ischemia–reperfusion (I–R). Five days after I–R, GK and GKRP immunoreactivities were hardly detected in the CA1, not CA2/3, pyramidal neurons; however, at this point in time, GK and GKRP immunoreactivities were newly expressed in astrocytes, not microglia, in the ischemic CA1. In brief, GK and GKRP immunoreactivities are changed in pyramidal neurons and newly expressed in astrocytes in the ischemic CA1 after transient cerebral ischemia. These indicate that changes of GK and GKRP expression may be related to the ischemia-induced neuronal damage/death.  相似文献   

18.
The rate of glucose phosphorylation in hepatocytes is determined by the subcellular location of glucokinase and by its association with its regulatory protein (GKRP) in the nucleus. Elevated glucose concentrations and precursors of fructose 1-phosphate (e.g., sorbitol) cause dissociation of glucokinase from GKRP and translocation to the cytoplasm. In this study, we investigated the counter-regulation of substrate-induced translocation by AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside), which is metabolized by hepatocytes to an AMP analog, and causes activation of AMP-activated protein kinase (AMPK) and depletion of ATP. During incubation of hepatocytes with 25 mM glucose, AICAR concentrations below 200 microM activated AMPK without depleting ATP and inhibited glucose phosphorylation and glucokinase translocation with half-maximal effect at 100-140 microM. Glucose phosphorylation and glucokinase translocation correlated inversely with AMPK activity. AICAR also counteracted translocation induced by a glucokinase activator and partially counteracted translocation by sorbitol. However, AICAR did not block the reversal of translocation (from cytoplasm to nucleus) after substrate withdrawal. Inhibition of glucose-induced translocation by AICAR was greater than inhibition by glucagon and was associated with phosphorylation of both GKRP and the cytoplasmic glucokinase binding protein, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) on ser-32. Expression of a kinase-active PFK2 variant lacking ser-32 partially reversed the inhibition of translocation by AICAR. Phosphorylation of GKRP by AMPK partially counteracted its inhibitory effect on glucokinase activity, suggesting altered interaction of glucokinase and GKRP. In summary, mechanisms downstream of AMPK activation, involving phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and GKRP are involved in the ATP-independent inhibition of glucose-induced glucokinase translocation by AICAR in hepatocytes.  相似文献   

19.
Glucokinase (GK), a key enzyme in the glucose homeostatic responses of the liver, changes its intracellular localisation depending on the metabolic status of the cell. Rat liver GK and Xenopus laevis GK, fused to the green fluorescent protein (GFP), concentrated in the nucleus of cultured rat hepatocytes at low glucose and translocated to the cytoplasm at high glucose. Three mutant forms of Xenopus GK with reduced affinity for GK regulatory protein (GKRP) did not concentrate in the hepatocyte nuclei, even at low glucose. In COS-1 and HeLa cells, a blue fluorescent protein (BFP)-tagged version of rat liver GK was only able to accumulate in the nucleus when it was co-expressed with GKRP-GFP. At low glucose, both proteins concentrated in the nuclear compartment and at high glucose, BFP-GK translocated to the cytosol while GKRP-GFP remained in the nucleus. These findings indicate that the presence of and binding to GKRP are necessary and sufficient for the proper intracellular localisation of GK and directly involve GKRP in the control of the GK subcellular distribution.  相似文献   

20.
Glucokinase is a monomeric enzyme that displays a low affinity for glucose and a sigmoidal saturation curve for its substrate, two properties that are important for its playing the role of a glucose sensor in pancreas and liver. The molecular basis for these two properties is not well understood. Herein we report the crystal structures of glucokinase in its active and inactive forms, which demonstrate that global conformational change, including domain reorganization, is induced by glucose binding. This suggests that the positive cooperativity of monomeric glucokinase obeys the "mnemonical mechanism" rather than the well-known concerted model. These structures also revealed an allosteric site through which small molecules may modulate the kinetic properties of the enzyme. This finding provided the mechanistic basis for activation of glucokinase as a potential therapeutic approach for treating type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号