首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endoglucanase I (EGI) from Trichoderma viride HK-75 catalyzes not only hydrolysis but also transglycosylation reactions of cellooligosaccharides. In order to characterize the important amino acid residues in transglycosylation of EGI, three Tyr, one Leu, and two Glu residues of EGI were replaced by Trp or Asp. The seven resulting EGI, except for L200W, had reduced activities toward carboxymethyl-cellulose compared to that of wild type EGI. The results from the mutations in the catalytic residues of E196 and E201 indicate that the space just around the catalytic residues is not directly related to the transglycosylation reactions of EGI. Analyses of the enzymes with mutations in the substrate-binding residues showed that Y146, Y170, and L200 of EGI are closely involved in the mode of transglycosylation and that several amino acid residues within the active site are involved in the transglycosylation reaction of EGI.  相似文献   

2.
从长枝木霉3.1029基因组中克隆了内切葡聚糖酶EGI基因,该基因全长1 566 bp,由3个外显子2个内含子组成,编码461个氨基酸,编码蛋白的N端为22aa组成的信号肽。采用重叠PCR法获得无内含子的内切葡聚糖酶基因eg1,构建成pYE-Leg1重组质粒;同时将其成熟肽编码序列插入酿酒酵母分泌型表达载体pYEα中,构建成pYEα-Leg1重组质粒;分别转化酿酒酵母。重组转化子经β-半乳糖诱导,检测表达产物的酶活,结果表明,pYE-Leg1转化子无明显胞外酶活;而pYEα-Leg1转化子在刚果红平板上可产生明显的水解圈,酶活检测显示pYEα载体可有效地将该基因在酿酒酵母中表达并分泌到胞外,发酵液中的酶活在培养96 h达到最高1.16 U/mL,最适酶解温度为50℃,最适pH值为5.6。以上研究将为利用酿酒酵母生产胞外纤维素酶提供依据。  相似文献   

3.
Trichoderma reesei cellulases are important biocatalysts for a wide range of industrial applications that include the paper, feed, and textile industries. T. reesei endoglucanase 1 (egl1) was successfully expressed as an active and stable catalyst in Pichia pastoris for the first time. Codon optimization was applied to egl1 of T. reesei to enhance its expression levels in P. pastoris. When compared with the originally cloned egl1 gene of T. reesei, the synthetic codon optimized egl1 gene (egl1s) was expressed at a higher level in P. pastoris. Batch fermentations of both clones with the same copy number under controlled conditions indicated that codon optimized EGI enzyme activity increased to 1.24 fold after 72 h of methanol induction. Our research indicated that P. pastoris is a suitable host for cellulase production.  相似文献   

4.
Trichoderma reesei strains were constructed for production of elevated amounts of endoglucanase II (EGII) with or without cellobiohydrolase I (CBHI). The endoglucanase activity produced by the EGII transformants correlated with the copy number of the egl2 expression cassette. One copy of the egl2 expression cassette in which the egl2 was under the cbh1 promoter increased production of endoglucanase activity 2.3-fold, and two copies increased production about 3-fold above that of the parent strain. When the enzyme with elevated EGII content was used, an improved stonewashing effect on denim fabric was achieved. A T. reesei strain producing high amounts of EGI and -II activities without CBHI and -II was constructed by replacing the cbh2 locus with the coding region of the egl2 gene in the EGI-overproducing CBHI-negative strain. Production of endoglucanase activity by the EG-transformant strain was increased fourfold above that of the host strain. The filter paper-degrading activity of the endoglucanase-overproducing strain was lowered to below detection, presumably because of the lack of cellobiohydrolases.  相似文献   

5.
The transglycosylation of p-nitrophenyl-beta-D-cellotrioside to cellotetraose catalyzed by endo-1,4-beta-glucanase (cellulase, EC 3.2.1.4) from a psychrotrophic yeast, Rhodotorula glutinis KUJ 2731, was increased by addition of a miscible organic solvent in the reaction mixture. Among various organic solvents tested, acetone was most effective. The transglycosylation activity increased with an increase in acetone concentrations, while hydrolysis activity was suppressed. The transglycosylation preferably occurred at acidic pH with the optimum pH at 2 in 10 mM Gly-HCl buffer. The optimum temperature of transglycosylation was found to be 50 degrees C in the presence of 40% acetone.  相似文献   

6.
In the search for suitable cellulase combinations for industrial biofinishing of cotton, five different types of Trichoderma reesei strains were constructed for elevated cellobiohydrolase production: CBHI overproducers with and without endoglucanase I (EGI), CBHII overproducers with and without endoglucanase II (EGII) and strains overproducing both CBHI and CBHII without the major endoglucanases I and II. One additional copy of cbh1 gene increased production of CBHI protein 1.3-fold, and two copies 1.5-fold according to ELISA (enzyme-linked immunosorbent assay). The level of total secreted proteins was increased in CBHI transformants as compared to the host strain. One copy of the cbh2 expression cassette in which the cbh2 was expressed from the cbh1 promoter increased production of CBHII protein three- to four-fold when compared to the host strain. T. reesei strains producing elevated amounts of both CBHI and CBHII without EGI and EGII were constructed by replacing the egl1 locus with the coding region of the cbh1 gene and the egl2 locus with the coding region of cbh2. The cbh1 was expressed from its own promoter and the cbh2 gene using either the cbh1 or cbh2 promoter. Production of CBHI by the CBH-transformants was increased up to 1.6-fold and production of CBHII up to 3.4-fold as compared with the host strain. Approximately similar amounts of CBHII protein were produced by using cbh1 or cbh2 promoters. When the enzyme preparation with elevated CBHII content was used in biofinishing of cotton, better depilling and visual appearance were achieved than with the wild type preparation; however, the improvement was not as pronounced as with preparations with elevated levels of endoglucanases (EG).  相似文献   

7.
Trichoderma reesei strains were constructed for production of elevated amounts of endoglucanase II (EGII) with or without cellobiohydrolase I (CBHI). The endoglucanase activity produced by the EGII transformants correlated with the copy number of the egl2 expression cassette. One copy of the egl2 expression cassette in which the egl2 was under the cbh1 promoter increased production of endoglucanase activity 2.3-fold, and two copies increased production about 3-fold above that of the parent strain. When the enzyme with elevated EGII content was used, an improved stonewashing effect on denim fabric was achieved. A T. reesei strain producing high amounts of EGI and -II activities without CBHI and -II was constructed by replacing the cbh2 locus with the coding region of the egl2 gene in the EGI-overproducing CBHI-negative strain. Production of endoglucanase activity by the EG-transformant strain was increased fourfold above that of the host strain. The filter paper-degrading activity of the endoglucanase-overproducing strain was lowered to below detection, presumably because of the lack of cellobiohydrolases.  相似文献   

8.
Endoglucanases, EGI and EgI, were produced from the same Ruminococcus albus gene in R. albus and recombinant Escherichia coli, respectively. EGI was purified from R. albus culture supernatant and EgI was extracted from the transformant E. coli (JM101/pURA1) and purified. The purified enzymes EGI and EgI revealed maximum endoglucanase activity at a same pH of 6.8 and a temperature of 37°C. Both enzymes were stable at temperatures below 30°C. In addition, about 10% of their original activities were conserved even after boiling for 10 min. Amino acid sequences of both enzymes at the N-terminal (Ala-Ala-Asp-Glu-Ser-Glu-Thr-Glu-Asn-Val-Pro-Val-Ser-Gln-Thr-His--) were consistent with each other. The antiserum against EgI reacted with both EgI and EGI, indicating that both their protein moieties were the same immunologically. However, the molecular size of EGI (43,000) was larger than that of EgI (39,000) due to the presence of sugar moiety. The specific activity (54 units/mg) of EGI was almost double that (27 units/mg) of EgI. EGI was immunologically different from the endoglucanase purified in the previous paper [Ohmiya et al.: Carbohydrate Res., 166, 145–155 (1987)].  相似文献   

9.
The malting quality of two barley cultivars, Kymppi and Golden Promise, was modified to better meet the requirements of the brewing process. The egl1 gene, coding for fungal thermotolerant endo-1,4--glucanase (EGI, cellulase), was transferred to the cultivars using particle bombardment, and transgenic plants were regenerated on bialaphos selection. Integration of the egl1 gene was confirmed by Southern blot hybridization. The transgenic seeds were screened for the expression of the heterologous EGI. Under the high-pI -amylase promoter, the egl1 gene was expressed during germination. The heterologous enzyme was thermotolerant at 65 °C for 2 h, thus being suitable for mashing conditions. The amount of heterologous EGI produced by the seeds (ca. 0.025% of soluble seed protein), has been shown to be sufficient to reduce wort viscosity by decreasing the soluble -glucan content. A decrease in the soluble -glucan content in the wort improves the filtration rate of beer.  相似文献   

10.
将绿色木霉葡聚糖内切酶EGⅢ基因亚克隆到表达载体pET-22b(+),构建重组质粒pET-egl3,转化到大肠杆菌BL21(DE3)。利用金属亲和层析对重组EGⅢ进行纯化,纯化后酶比活力达到6u/mg蛋白,最适反应温度为60℃,最适pH为4.0。同时对EGⅢ催化区的氨基酸残基R130和E218进行定点饱和突变,各筛选到一株酶活有提高的突变子R130P和E218F,其比活力为野生型EGⅢ的2.8倍和3.45倍。突变酶E218F的Km提高了一倍,催化效率Kcat提高了5.4倍;而R130P的Km和Kcat没有明显变化。两个突变酶的最适酶解温度和pH分别都提高至65℃和4.4。  相似文献   

11.
12.
Cultures of Sclerotium rolfsii and Trichoderma viride together in autoclaved soil were assayed at intervals during 8 days of incubation for proteolytic activity (PA) of T. viride. Significant proteolytic activity was detected only in soil containing T. viride (i.e., T. viride alone or S. rolfsii + T. viride); greatest activity occurred between 3 and 4 days after infestation and declined rapidly thereafter. Maximal PA in the mixed-culture soil was accompanied by an increase in soil pH. optimal pH values for PA was 5.5-6.5 with a maximum at 6.0.  相似文献   

13.
利用纤维素酶高产菌绿色木霉Trichoderma viride降解木质纤维素是实现废料资源化的重要手段。本研究选取来自不同生境的两株T. viride,分别以玉米秸秆和甘草药渣为基质,测定两者滤纸纤维素酶(filter paper cellulase,FPase)活性和还原糖产量。从时间、温度、水分、pH 4个方面比较两株T. viride的环境适应性和不同基质的差异性。结果表明,以玉米秸秆为基质,T. viride XJ最适初始料液比为1:4-1:5.5,T. viride AG最适初始料液比为1:5-1:5.5。初始料液比1:5.5时,T. viride AG产FPase活性显著高于T. viride XJ。两株T. viride最适发酵温度均为28℃,各温度处理下不同菌株间无显著差异。两株T. viride均表现为还原糖消耗。以甘草药渣为基质,T. viride XJ最适初始料液比为1:2-1:2.5,T. viride AG最适初始料液比为1:3-1:3.5。料液比高于1:3,T. viride AG产FPase活性显著高于T. viride XJ。T. viride AG最适发酵温度为28℃,T. viride XJ最适发酵温度为23-28℃。温度低于28℃,T. viride XJ产FPase活性显著高于T. viride AG。两株T. viride均表现为还原糖积累。两株T. viride最适初始pH均为6-7,最适发酵时间均为3d。最优发酵条件下FPase活性:T. viride AG>T. viride XJ。对T. viride产FPase诱导能力:甘草药渣>玉米秸秆。变差分解表明两株T. viride产FPase活性差异主要源于菌株对生境的生态适应。比较分析菌种来源、基质类型、环境条件对T. viride发酵效果的影响,将有助于该菌大规模应用性研究。  相似文献   

14.
Enzymatic properties and substrate specificity of recombinant beta-glycosidases from a hyperthermophilic archaeon, Sulfolobus shibatae (rSSG), were analyzed. rSSG showed its optimum temperature and pH at 95 degrees C and pH 5.0, respectively. Thermal inactivation of rSSG showed that its half-life of enzymatic activity at 75 degrees C was 15 h whereas it drastically decreased to 3.9 min at 95 degrees C. The addition of 10 mM of MnCl2 enhanced the hydrolysis activity of rSSG up to 23% whereas most metal ions did not show any considerable effect. Dithiothreitol (DTT) and 2-mercaptoethanol exhibited significant influence on the increase of the hydrolysis activity of rSSG. rSSG apparently preferred laminaribiose (beta1-->3Glc), followed by sophorose (beta1-->2Glc), gentiobiose (beta1-->6Glc), and cellobiose (beta1--4Glc). Various intermolecular transfer products were formed by rSSG in the lactose reaction, indicating that rSSG prefers lactose as a good acceptor as well as a donor. The strong intermolecular transglycosylation activity of rSSG can be applied in making functional oligosaccharides.  相似文献   

15.
Glutamic acid decarboxylase (GAD) activity was measured in homogenates of conidia and both submerged and aerial mycelia of Trichoderma viride. The GAD activity in conidia had a temperature optimum at 30 degrees C and a pH optimum at pH 4. GAD was stimulated by EDTA (2 mM) and was insensitive to treatment with calmodulin antagonists calmidazolium (10 microM) or phenothiazine neuroleptics (60 microM). Cyclosporin A (up to 300 microM) partially inhibited GAD in the homogenate, but not in the supernatant obtained after centrifuging the homogenate. Attempts to release GAD activity from the homogenate using high ionic strength, detergents, or urea failed. Freezing-thawing led to the partial increase of activity in the conidial homogenate. These results indicate that GAD is a membrane-bound enzyme. The highest specific activity of GAD was present in the mitochondrial/vacuolar organellar fraction. Germination of conidia in the submerged culture led to a temporary decrease in GAD activity. After prolonged cultivation, the activity displayed quasi-oscillatory changes. The stationary state was characterized by a high GAD activity. The presence of gamma-aminobutyric acid in the submerged mycelia was demonstrated. In surface culture in the dark, GAD activity increased in a monophasic manner until conidia formation. The illumination of dark-cultivated mycelia by a white-light pulse caused a dramatic increase in GAD activity. Light-induced changes were not observed in mutants with delayed onset of conidiation. In the dark or upon illumination by light pulse, the increase of GAD activity preceded the appearance of conidia. Thus, GAD activity in T. viride is closely associated with its developmental status and may represent a link between differentiation events and energy metabolism.  相似文献   

16.
Trypsin was immobilized on sand using five different methods. Attempts were made to attach amino-functional groups onto sand using 3-aminopropyltriethoxysilane, hexamethylenetetramine, hexamethylenediamine, and melamine. Glutaraldehyde was used as a bifunctional agent in all the methods. Methods for the estimation of the proteolytic 1activity and protein content of immobilized trypsin were standardized. The maximum retained activity was observed for trypsin immobilized on sand via 3-aminopropytriethoxysilane and glutaraldehyde. Immobilized trypsin showed a shift in the pH optimum toward the acidic side over that of soluble trypsin in all five cases. The optimum temperature for both native and immobilized trypsin prepared by the silane-glutaraldehyde method was found to be 45°C. However, the pH and thermal stabilities of immobilized trypsin were observed to be better than that of the native enzyme.  相似文献   

17.

Unveiling the determinants for transferase and hydrolase activity in glycoside hydrolases would allow using their vast diversity for creating novel transglycosylases, thereby unlocking an extensive toolbox for carbohydrate chemists. Three different amino acid substitutions at position 220 of a GH1 β-glucosidase from Thermotoga neapolitana caused an increase of the ratio of transglycosylation to hydrolysis (r s/r h) from 0.33 to 1.45–2.71. Further increase in r s/r h was achieved by modulation of pH of the reaction medium. The wild-type enzyme had a pH optimum for both hydrolysis and transglycosylation around 6 and reduced activity at higher pH. Interestingly, the mutants had constant transglycosylation activity over a broad pH range (5–10), while the hydrolytic activity was largely eliminated at pH 10. The results demonstrate that a combination of protein engineering and medium engineering can be used to eliminate the hydrolytic activity without affecting the transglycosylation activity of a glycoside hydrolase. The underlying factors for this success are pursued, and perturbations of the catalytic acid/base in combination with flexibility are shown to be important factors.

  相似文献   

18.
The trehalosyl dextrin-forming enzyme (TDFE) mainly catalyzes an intramolecular transglycosyl reaction to form trehalosyl dextrins from dextrins by converting the -1,4-glucosidic linkage at the reducing end to an -1,1-glucosidic linkage. In this study, the treY gene encoding TDFE was PCR cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7 lac promoter and then expressed in Escherichia coli. The recombinant TDFE was purified sequentially by using heat treatment, ultrafiltration, and gel filtration. The obtained recombinant TDFE showed an apparent optimal pH of 5 and an optimal temperature of 75°C. The enzyme was stable in a pH range of 4.5–11, and the activity remained unchanged after a 2-h incubation at 80°C. The transglycosylation activity of TDFE was higher when using maltoheptaose as substrate than maltooligosaccharides with a low degree of polymerization (DP). However, the hydrolysis activity of TDFE became stronger when low DP maltooligosaccharides, such as maltotriose, were used as substrate. The ratios of hydrolysis activity to transglycosylation activity were in the range of 0.2–14% and increased when the DP of substrate decreased. The recombinant TDFE was found to exhibit different substrate specificity, such as its preferred substrates for the transglycosylation reaction and the ratio of hydrolysis to transglycosylation of the enzyme reacting with maltotriose, when compared with other natural or recombinant TDFEs from Sulfolobus.  相似文献   

19.
Trichoderma strains were extensively studied as biocontrol agents due to their ability of producing hydrolytic enzymes, which are considered key enzymes because they attack the insect exoskeleton allowing the fungi infection. The present work aimed to evaluate the ability of chitosanase production by four Trichoderma strains (T. harzianum, T. koningii, T. viride and T. polysporum) under solid stated fermentation and to evaluate the effect of pH and temperature on enzyme activity. pH strongly affected the enzyme activity from all tested strains. Chitosanase from T. harzianum and T. viride presented optimum activity at pH 5.0 and chitosanase from T. koningii and T. polysporum presented optimum activity at pH 5.5. Temperature in the range of 40–50°C did not affect enzyme activity. T. polysporum was found as the most promising strain to produce chitosanase with maximal enzyme activity of about 1.4 IU/gds, followed by T. viride (~1.2 IU/gds) and T. harzianum (1.06 IU/gds).  相似文献   

20.
One strategy to obtain better yields of secreted proteins has been overexpression of single endoplasmic reticulum-resident foldases or chaperones. We report here that manipulation of the unfolded-protein response (UPR) pathway regulator, HAC1, affects production of both native and foreign proteins in the yeast Saccharomyces cerevisiae. The effects of HAC1 deletion and overexpression on the production of a native protein, invertase, and two foreign proteins, Bacillus amyloliquefaciens alpha-amylase and Trichoderma reesei endoglucanase EGI, were studied. Disruption of HAC1 caused decreases in the secretion of both alpha-amylase (70 to 75% reduction) and EGI (40 to 50% reduction) compared to the secretion by the parental strain. Constitutive overexpression of HAC1 caused a 70% increase in alpha-amylase secretion but had no effect on EGI secretion. The invertase levels were twofold higher in the strain overexpressing HAC1. Also, the effect of the active form of T. reesei hac1 was tested in S. cerevisiae. hac1 expression caused a 2.4-fold increase in the secretion of alpha-amylase in S. cerevisiae and also slight increases in invertase and total protein production. Overexpression of both S. cerevisiae HAC1 and T. reesei hac1 caused an increase in the expression of the known UPR target gene KAR2 at early time points during cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号