首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Nichols 《Planta》1976,133(1):47-52
Summary Histological examination of the ovary walls from ethylene-treated cut flowering stems of the carnation showed that the cells had enlarged and this appeared to account for the increased growth of the ovary which follows ethylene treatment of this flower. Sugar analyses of the flower parts indicated that growth of the ovary was accompanied by an increase in the ratio of sucrose to reducing sugars in the petals and ovary, and a net increase in sugars in the ovary. A sugar, tentatively identified as xylose, increased in the petals after ethylene treatment. Nitrogen, phosphorus and potassium contents of the ovary also increased after the ethylene treatment. The results, consistent with the hypothesis that sucrose is translocated in response to ethylene, are discussed in relation to previous work relating to the involvement of ethylene in flower senescence.  相似文献   

2.
R. Nichols 《Planta》1977,135(2):155-159
Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2–3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.  相似文献   

3.
Acetaldehyde and ethanol, when applied as low concentration holdingsolutions both extend the vase life of cut carnation flowers. A majormorphological disturbance within the flowers partly responsible for thislongevity increase is the inhibition of ovary development. In normallysenescingflowers the ovary acts as a carbohydrate sink within the system. They gain incarbohydrate and chlorophyll content during the senescence process. Theapplication of ethanol or acetaldehyde prevents the increase in chlorophyll inall flower organs. In the ovary itself there is a severe reduction in theamountof chlorophyll present, suggesting that these treatments are detrimental to thechloroplasts. The ovaries of treated flowers also show a marked decrease incarbohydrate content, indicating that the ovary is no longer acting as acarbohydrate sink. Nevertheless there is still a gradual carbohydrate loss fromthe petals. This implies the development of a new sink within the system, orthat the carbohydrates from both organs are being used for cellular metabolismand flower longevity. The latter seems more likely as ethanol-treated flowersstill exhibited climacteric respiration, although at a reduced rate. Thus withno photosynthates to drive the system energy must be obtained from othersourceswithin the flower such as the ovary and petals.  相似文献   

4.
5.
南瓜两性花的形态与结构研究   总被引:2,自引:0,他引:2  
黄玉源  缪汝槐  张宏达   《广西植物》1999,19(2):136-142
对南瓜的两性花进行外部形态及结构的研究,结果表明:南瓜的两性花可有子房上位花、子房半下位花和子房下位花三种类型:花萼、花冠均为5,合瓣;雄蕊3,其中有两枚各由两个雄蕊合生而成,分离和部分联合,花药结构特殊,花粉发育正常;雌蕊具有单个或两个柱头及花柱。子房壁结构正常。上方的子房壁表皮发育完好,具气孔器。胚珠在外形上也发育正常。两性花与单性花同生长在一个植株上,可以连续多代稳定地遗传,萌生当代植株的种子来源于上一代雌花。这对探讨被子植物的系统进化关系有着重要的意义  相似文献   

6.
The possibility that exopeptidases, i.e. aminopeptidases and carboxypeptidases, in addition to the previously studied endopeptidase might also be developmentally regulated in daylily petals was examined. The level of leucine aminopeptidase and endopeptidase activities changed after the flower was fully open while that of carboxypeptidase activity remained relatively unchanged throughout senescence. Leucine aminopeptidase activity seemed to increase after the flower was fully open and peaked several hours earlier than endopeptidase did. Taken together, it is postulated that leucine aminopeptidase might play a role in protein turnover during flower opening and in the initiation of protein hydrolysis associated with petal senescence while the endopeptidase could be responsible for the breakdown of the bulk of proteins at the later stages. The drop in leucine aminopeptidase activity associated with the onset of daylily petal senescence was effectively halted by a cycloheximide treatment of cut daylily flowers for 24 h which was previously shown to prolong the vase life of the flowers and prevent protein loss from the petals. Apart from both being developmentally regulated in daylily petals, the leucine aminopeptidase activity and the previously studied endopeptidase are different in several aspects. They appear to have different pH optima, 8 for leucine aminopeptidase and 6.2 for endopeptidase. Unlike the endopeptidase activity, no new leucine aminopeptidase isozymes appeared during petal senescence, and the leucine aminopeptidase did not appear to belong to the cysteine class of proteolytic enzymes.  相似文献   

7.
InMazus pumilus, all the floral appendages are initiated in acropetal sequence in the second cell layer (except stamens) of the floral primordium by periclinal divisions. The actinomorphic calyx tube is formed due to zonal growth. The zygomorphy in corolla is evident from the inception of petal primordia which arise sequentially as independent units in order of one anterior, a pair of anterio-lateral followed by a pair of posterio-lateral. Later these primordia exhibit differential growth because of which zygomorphy becomes more pronounced. The upper corolla tube is formed by interprimordial growth and lower corolla tube by zonal growth. Stamens are initiated in the third layer of the floral apex. Unlike sepals and petals, in the development of stamens (4) underlying cells of corpus also contribute. Posterior stamen is absent. The stamens become epipetalous because of interprimordial and zonal growth in the common region below the bases of petals as well as stamens. The two carpel primordia arise as crescent shaped structures which become continuous due to interprimordial growth. The ovary is formed by a ring of zonal meristem. The style develops later between stigma and ovary because of intercalary growth. The residual apex grows vertically along with the ovary and forms the septum of the ovary. All the floral appendages exhibit similar pattern of histogenesis and early growth suggesting thereby the appendicular nature of these appendages.  相似文献   

8.
该研究采用RT-PCR和RACE技术从春兰(Cymbidium goeringii)中分离到1个SEPALLATA3(SEP3)基因。序列分析表明,该基因含有1个732bp的开放阅读框(ORF),共编码243个氨基酸。系统进化树分析显示,该基因是MADS-box基因家族AP1/AGL9组SEP的同源基因,其编码蛋白与其它植物SEP3类蛋白具有较高的一致性,命名为CgSEP3(登录号为KF924272)。实时荧光定量分析表明,CgSEP3在春兰花器官中均有表达,其中在唇瓣、侧瓣和萼片中的表达量较高,在子房和蕊柱中的表达量较低;而且CgSEP3在花发育各个时期都有表达,在1~2cm的花芽中表达量最高,在盛开的花中的表达量最低。研究认为,CgSEP3基因可能在春兰花瓣和萼片的形成过程中具有重要作用。  相似文献   

9.
G. Bufler  Y. Mor  M. S. Reid  S. F. Yang 《Planta》1980,150(5):439-442
The rise in ethylene production accompanying the respiration climacteric and senescence of cut carnation flowers (Dianthus caryophyllus L. cv. White Sim) was associated with a 30-fold increase in the concentration of 1-aminocyclopropane-1-carboxylic acid (ACC) in the petals (initial content 0.3 nmol/g fresh weight). Pretreatment of the flowers with silver thiosulfate (STS) retarded flower senescence and prevented the increase in ACC concentration in the petals. An increase in ACC in the remaining flower parts, which appeared to precede the increase in the petals, was only partially prevented by the STS pretreatment. Addition of aminoxyacetic acid (2 mM) to the solution in which the flowers were kept completely inhibited accumulation of ACC in all flower parts.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA -aminoxyacetic acid - STS silver thiosulfate complex  相似文献   

10.
1,1-Dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS)inhibited ethylene productionin carnation flowers during natural senescence, butdid not inhibit the ethyleneproduction induced by exogenous ethylene in carnationflowers, by indole-3-acetic acid (IAA) in mungbean hypocotylsegments and by wounding in winter squashmesocarp tissue. These findings suggested that DPSSdoes not directly inhibit ethylene biosynthesis fromL-methionine to ethylenevia S-adenosyl-L-methionine and1-aminocyclopropane-1-carboxylate. During naturalsenescence of carnation flowers, abscisic acid (ABA)was accumulated in the pistil and petals 2 days beforethe onset of ethylene production in the flower, andthe ABA content remained elevated until the onset ofethylene production. Application of exogenousABA to cut flowers from the cut stem end caused arapid increase in the ABA content in flower tissuesand promoted ethylene production in the flowers. These results were in agreement with the previousproposal that ABA plays a crucial role in theinduction of ethylene production during natural senescence incarnation flowers. DPSS preventedthe accumulation of ABA in both the pistil and petals,suggesting that DPSS exerted its inhibitory action onethylene production in naturally-senescing carnationflowers through the effect on the ABA-related process.  相似文献   

11.
Although the physiological and molecular mechanisms of flower development and senescence have been extensively investigated, a whole-flower partitioning study of mineral concentrations has not been carried out. In this work, the distribution of sucrose, total reducing sugars, dry and fresh weight and macro and micronutrients were analysed in Hibiscus rosa-sinensis L. petals, stylestigma including stamens and ovary at different developmental stages (bud, open and senescent flowers). Total reducing sugars showed the highest value in petals of bud flowers, then fell during the later stages of flower development whereas sucrose showed the highest value in petals of senescent flowers. In petals, nitrogen and phosphorus content increased during flower opening, then nitrogen level decreased in senescent flowers. The calcium, phosphorus and boron concentrations were highest in ovary tissues whatever the developmental stage. Overall, the data presented suggests that the high level of total reducing sugars prior the onset of flower opening contributes to support petal cells expansion, while the high amount of sucrose at the time of petal wilting may be viewed as a result of senescence. Furthermore, this study discusses how the accumulation of particular mineral nutrients can be considered in a tissue specific manner for the activation of processes directly connected with reproduction.  相似文献   

12.
报道了中国石竹科蝇子草属一新记录种——硬骨草叶蝇子草(Silene holosteifolia Bocquet et Chater),并根据标本首次提供了该物种完整的形态描述和线描图。硬骨草叶蝇子草先前发现于尼泊尔和不丹,现发现于中国西藏自治区日喀则市的吉隆和聂拉木两县境内。硬骨草叶蝇子草与花脉蝇子草(S.multifurcata C.L.Tang)形态上最为相近,主要区别在于硬骨草叶蝇子草的花常单生,苞片卵状披针形,花萼钟形或圆球形,且纵脉黑色,在萼齿处脉端不连合,花瓣黄绿色,多次分裂,流苏状,裂片近线形,花柱3。凭证标本存于中国科学院植物研究所植物标本馆、昆明植物所标本馆和美国史密森学会。  相似文献   

13.
14.
D. Orzáez  R. Blay  A. Granell 《Planta》1999,208(2):220-226
The role of ethylene in the control of senescence of both petals and unpollinated carpels of pea was investigated. An increase in ethylene production accompanied senescence, and the inhibitors of ethylene action were effective in delaying senescence symptoms in different flower verticils. Pollination did not seem to trigger the senescence syndrome in the corolla as deduced from the observation that petals from pollinated and unpollinated flowers and from flowers whose carpels had been removed senesced at the same time. A cDNA clone encoding a putative ethylene-response sensor (psERS) was isolated from pea flowers, and the pattern of expression of its mRNA was studied during development and senescence of different flower tissues. The levels of psERS mRNA paralleled ethylene production (and also levels of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) mRNA) in both petals and styles. Silver thiosulfate treatments were efficient at preventing ACO and psERS mRNA induction in petals. However, the same inhibitor showed no ability to modify expression patterns in pea carpels around the anthesis stage, suggesting different controls for ethylene synthesis and sensitivity in different flower organs. Received: 18 June 1998 / Accepted: 22 December 1998  相似文献   

15.
NICHOLS  R.; HO  L. C. 《Annals of botany》1975,39(2):287-296
The translocation and distribution of dry matter were studiedin the floral and vegetative parts of the cut carnation duringsenescence. The change in dry weights of the tissues and theamount of radioactivity recovered from them after feeding with14C-sucrose were measured. Treatments with ethylene and sucrosewere used to alter the rate of senescence of the flowers. Sucrosemoved through the stem relatively unchanged but was rapidlyinverted and metabolized in the petals. During natural ageing,14C moved from the stem to the flower and the movement was enhancedby exogenous sucrose, which also reduced the loss of dry matterin the petals and promoted their growth. Treatment with ethylenecaused petals to wilt and lose dry weight, and ovaries to enlargeand increase in dry weight. The distribution of radioactivityin flowers fed with 14C-sucrose before and after ethylene treatmentsupported the observation that dry matter was translocated betweenthe flower parts. The results indicate that a change in thesource-ink relationships of the flower parts contributes tothe factors that determine the rate of flower senescence.  相似文献   

16.
Galactose was the major non-cellulosic neutral sugar present in the cell walls of ‘Mitchell’ petunia (Petunia axillaris × P. axillaris × P. hybrida) flower petals. Over the 24 h period associated with flower opening, there was a doubling of the galactose content of polymers strongly associated with cellulose and insoluble in strong alkali (‘residual’ fraction). By two days after flower opening, the galactose content of both the residual fraction and a Na2CO3-soluble pectin-rich cell wall fraction had sharply decreased, and continued to decline as flowers began to wilt. In contrast, amounts of other neutral sugars showed little change over this time, and depolymerisation of pectins and hemicelluloses was barely detectable throughout petal development. Size exclusion chromatography of Na2CO3-soluble pectins showed that there was a loss of neutral sugar relative to uronic acid content, consistent with a substantial loss of galactose from rhamnogalacturonan-I-type pectin. β-Galactosidase activity (EC 3.2.1.23) increased at bud opening, and remained high through to petal senescence. Two cDNAs encoding β-galactosidase were isolated from a mixed stage petal library. Both deduced proteins are β-galactosidases of Glycosyl Hydrolase Family 35, possessing lectin-like sugar-binding domains at their carboxyl terminus. PhBGAL1 was expressed at relatively high levels only during flower opening, while PhBGAL2 mRNA accumulation occurred at lower levels in mature and senescent petals. The data suggest that metabolism of cell wall-associated polymeric galactose is the major feature of both the opening and senescence of ‘Mitchell’ petunia flower petals.  相似文献   

17.
以葱莲(Zephyranthes candida)为材料,研究不同浓度外源脱落酸、硝普钠(sodium nitroprusside,SNP)及过氧化氢对花瓣和叶片表皮气孔开闭的影响,以期为三者在切花保鲜中的应用提供新的依据。实验结果表明,10~1000 μmol/L脱落酸和硝普钠均能不同程度地引起花瓣和叶片表皮气孔关闭,且花瓣气孔较叶片气孔有更高的敏感性。过氧化氢对叶片表皮气孔开闭的影响大于对花瓣气孔的影响,花瓣表皮的气孔孔径仅在1000 μmol/L处理时变化显著。这说明在外源信号物质延缓切花衰老的过程中,花瓣表皮气孔的运动也可能起到了一定的作用。适当外源信号物质处理能诱导花瓣表皮气孔关闭,从而使花瓣的蒸腾作用减小,维持植物体内水势,延缓切花衰老。  相似文献   

18.
以葱莲(Zephyranthes candida)为材料,研究不同浓度外源脱落酸、硝普钠(sodium nitroprusside,SNP)及过氧化氢对花瓣和叶片表皮气孔开闭的影响,以期为三者在切花保鲜中的应用提供新的依据。实验结果表明,10~1000μmol/L脱落酸和硝普钠均能不同程度地引起花瓣和叶片表皮气孔关闭,且花瓣气孔较叶片气孔有更高的敏感性。过氧化氢对叶片表皮气孔开闭的影响大于对花瓣气孔的影响,花瓣表皮的气孔孔径仅在1000μmol/L处理时变化显著。这说明在外源信号物质延缓切花衰老的过程中,花瓣表皮气孔的运动也可能起到了一定的作用。适当外源信号物质处理能诱导花瓣表皮气孔关闭,从而使花瓣的蒸腾作用减小,维持植物体内水势,延缓切花衰老。  相似文献   

19.
The use of acetaldehyde to control carnation flower longevity   总被引:1,自引:0,他引:1  
Acetaldehyde is the causal agent of ethanol-induced longevity increases in carnation cut flowers. It increases the vase life of cut carnation flowers by at least 50%. The capacity of acetaldehyde to regulate carnation flower senescence was therefore investigated. Ethylene formation was reduced or inhibited as a result of acetaldehyde application. There was, however, no prevention of ethylene action. The morphological development of the ovary was also inhibited, thus eliminating the movement of metabolites from the petals. The potential use of acetaldehyde as a post-harvest treatment is however impractical, due to the inefficiency of pulse treatments and ineffectiveness in preventing the action of exogenous ethylene.  相似文献   

20.
以弯齿盾果草不同发育时期的花芽为材料,在体视显微镜解剖观察的基础上使用扫描电镜对弯齿盾果草花序、花及果实的发育过程进行了观察。结果显示:(1)弯齿盾果草的花序是由最初的一个球形花序原基经过多次分裂形成的,且花序发生式样符合蝎尾状聚伞花序结构,而非通常所描述的镰状或螺状聚伞花序;花序发生过程中无单一主轴,花序轴是由侧枝连接而成,每一朵花原基有其对应的1枚苞片,下一花原基是从相邻的上一枚苞腋里发生,相邻两花原基交错互生。(2)花器官的发生是按照花萼原基、花冠原基、雄蕊原基和雌蕊原基的顺序发育,但雄蕊原基的花药部分发育速度要比花冠原基快,所以花器官的发育是按照花萼、雄蕊、花冠和雌蕊的顺序发育。(3)子房四深裂结构是由4个原基分别发育,而后相互靠拢而成。(4)小坚果表面的附属结构发生于子房发育后期,其背面的内外层突起分别是由生长较快的外部组织的边缘通过上部内缩和下部向外环状生长形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号