首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.  相似文献   

2.
To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.  相似文献   

3.
A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three widely different secretagogues, aminoethyldextran (AED), veratridine and caffeine, similar anterior Nain and posterior Kout currents (both known to be Ca(2+)-dependent) were observed. Direct de- or hyperpolarization induced by current injection failed to trigger exocytosis. For both, exocytotic membrane fusion and secretagogue-induced membrane currents, sensitivity to or availability of Ca2+ appears to be different. Current responses to AED were blocked by W7 or trifluoperazine, while exocytosis remained unaffected. Reducing [Ca2+]o to < or = 0.16 microM (i.e., resting [Ca2+]i) suppressed electrical membrane responses triggered with AED, while we had previously documented normal exocytotic membrane fusion. From this we conclude that the primary effect of AED (as of caffeine) is the mobilization of Ca2+ from the subplasmalemmal pools which not only activates exocytosis (abolished by iontophoretic EGTA injection) but secondarily also spatially segregated plasmalemmal Ca(2+)-dependent ion channels (indicative of subplasmalemmal [Ca2+]i increase, but irrelevant for Ca2+ mobilization). The 45Ca2+ influx previously observed during AED triggering may serve to refill depleted stores. Apart from the insensitivity of our system to depolarization, the mode of direct Ca2+ mobilization from stores by mechanical coupling to the cell membrane (without previous Ca(2+)-influx from outside) closely resembles the model currently discussed for skeletal muscle triads.  相似文献   

4.
Cytoplasmic Ca(2+) ([Ca(2+)](i)) and membrane potential changes were measured in clonal pancreatic beta cells using a fluorimetric imaging plate reader (FLIPR). KCl (30 mM) produced a fast membrane depolarization immediately followed by increase of [Ca(2+)](i) in BRIN-BD11 cells. l-Alanine (10 mM) but not l-arginine (10 mM) mimicked the KCl profile and also produced a fast membrane depolarization and elevation of [Ca(2+)](i). Conversely, a rise in glucose from 5.6 mM to 11.1 or 16.7 mM induced rapid membrane depolarization, followed by a slower and delayed increase of [Ca(2+)](i). GLP-1 (20 nM) did not affect membrane potential or [Ca(2+)](i). In contrast, acetylcholine (ACh, 100 microM) induced fast membrane depolarization immediately followed by a modest [Ca(2+)](i) increase. When extracellular Ca(2+) was buffered with EGTA, ACh mobilized intracellular calcium stores and the [Ca(2+)](i) increase was reduced by 2-aminoethoxydiphenyl borate but not by dantrolene, indicating the involvement of inositol triphosphate receptors (InsP(3)R). It is concluded that membrane depolarization of beta cells by glucose stimulation is not immediately followed by elevation of [Ca(2+)](i) and other metabolic events are involved in glucose induced stimulus-secretion coupling. It is also suggested that ACh mobilizes intracellular Ca(2+) through store operated InsP(3)R.  相似文献   

5.
HEK293 cells expressing the thyrotropin-releasing hormone (TRH) receptor were transfected with cameleon Ca(2+) indicators designed to measure the free Ca(2+) concentration in the cytoplasm, [Ca(2+)](cyt), and the endoplasmic reticulum (ER), [Ca(2+)](er). Basal [Ca(2+)](cyt) was about 50 nm; thyrotropin-releasing hormone (TRH) or other agonists increased [Ca(2+)](cyt) to 1 micrometer or higher. Basal [Ca(2+)](er) averaged 500 micrometer and fell to 50-100 micrometer over 10 min in the presence of thapsigargin. TRH consistently decreased [Ca(2+)](er) to 100 micrometer, independent of extracellular Ca(2+), whereas agonists for endogenous receptors generally caused a smaller decline. When added with thapsigargin, all agonists rapidly decreased [Ca(2+)](er) to 5-10 micrometer, indicating that there is substantial store refilling during signaling. TRH increased [Ca(2+)](cyt) and decreased [Ca(2+)](er) if applied after other agonists, whereas other agonists did not alter [Ca(2+)](cyt) or [Ca(2+)](er) if added after TRH. When Ca(2+) was added back to cells that had been incubated with TRH in Ca(2+)-free medium, [Ca(2+)](cyt) and [Ca(2+)](er) increased rapidly. The increase in [Ca(2+)](er) was only partially blocked by thapsigargin but was completely blocked if cells were loaded with 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. In conclusion, these new Ca(2+) indicators showed that basal [Ca(2+)](er) is approximately 500 micrometer, that [Ca(2+)](er) has to be >100 micrometer to support an increase in [Ca(2+)](cyt) by agonists, and that during signaling, intracellular Ca(2+) stores are continuously refilled with cytoplasmic Ca(2+) by the sarcoendoplasmic reticulum Ca(2+)-ATPase pump.  相似文献   

6.
The Ca(2+) depletion of the endoplasmic reticulum (ER) activates the ubiquitous store-operated Ca(2+) entry (SOCE) pathway that sustains long-term Ca(2+) signals critical for cellular functions. ER Ca(2+) depletion initiates the oligomerization of stromal interaction molecules (STIM) that control SOCE activation, but whether ER Ca(2+) refilling controls STIM de-oligomerization and SOCE termination is not known. Here, we correlate the changes in free luminal ER Ca(2+) concentrations ([Ca(2+)](ER)) and in STIM1 oligomerization, using fluorescence resonance energy transfer (FRET) between CFP-STIM1 and YFP-STIM1. We observed that STIM1 de-oligomerized at much lower [Ca(2+)](ER) levels during store refilling than it oligomerized during store depletion. We then refilled ER stores without adding exogenous Ca(2+) using a membrane-permeable Ca(2+) chelator to provide a large reservoir of buffered Ca(2+). This procedure rapidly restored pre-stimulatory [Ca(2+)](ER) levels but did not trigger STIM1 de-oligomerization, the FRET signals remaining elevated as long as the external [Ca(2+)] remained low. STIM1 dissociation evoked by Ca(2+) readmission was prevented by SOC channel inhibition and was associated with cytosolic Ca(2+) elevations restricted to STIM1 puncta, indicating that Ca(2+) acts on a cytosolic target close to STIM1 clusters. These data indicate that the refilling of ER Ca(2+) stores is not sufficient to induce STIM1 de-oligomerization and that localized Ca(2+) elevations in the vicinity of assembled SOCE complexes are required for the termination of SOCE.  相似文献   

7.
Kuo SY  Jiann BP  Lu YC  Chang HT  Chen WC  Huang JK  Jan CR 《Life sciences》2003,72(15):1733-1743
2,2'-dithiodipyridine (2,2'-DTDP), a reactive disulphide that mobilizes Ca(2+) in muscle, induced an increase in cytoplasmic free Ca(2+)concentrations ([Ca(2+)](i)) in MG63 human osteosarcoma cells loaded with the Ca(2+)-sensitive dye fura-2. 2,2'-DTDP acted in a concentration-independent manner with an EC(50) of 50 microM. The Ca(2+) signal comprised an initial spike and a prolonged increase. Removing extracellular Ca(2+) did not alter the Ca(2+) signal, suggesting that the Ca(2+) signal was due to store Ca(2+) release. In Ca(2+)-free medium, the 2,2'-DTDP-induced [Ca(2+)](i) increase was not changed by depleting store Ca(2+) with 50 microM bredfeldin A (a Golgi apparatus permeabilizer), 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP, a mitochondrial uncoupler), 1 microM thapsigargin (an endoplasmic reticulum Ca(2+)pump inhibitor) or 5 microM ryanodine. Conversely, 2,2'-DTDP pretreatment abolished CCCP and thapsigargin-induced [Ca(2+)](i) increases. 2,2'-DTDP-induced Ca(2+) signals in Ca(2+)-containing medium were not affected by modulation of protein kinase C activity or suppression of phospholipase C activity. However, 2,2'-DTDP-induced Ca(2+) release was inhibited by a thiol-selective reducing reagent, dithiothreitol (5-25 microM) in a concentration-dependent manner. Collectively, this study shows that 2,2'-DTDP induced [Ca(2+)](i) increases in human osteosarcoma cells via releasing store Ca(2+)from multiple stores in a manner independent of protein kinase C or phospholipase C activity. The 2,2'-DTDP-induced store Ca(2+) release appeared to be dependent on oxidation of membranes.  相似文献   

8.
The effects of the artificial Ca(2+) buffers EGTA and BAPTA upon histamine-induced Ca(2+) oscillations and calcium waves were studied in HeLa cells. These events were also examined in HeLa cell lines transfected with the intracellular calcium-binding protein calbindin-D28k (CaBP; HeLa-CaBP) or the pCINeo vector alone (HeLa-pCINeo). High concentrations of the Ca(2+) indicators fluo-3 and fura-2 significantly influenced the oscillatory pattern of intracellular Ca(2+) in HeLa-pCINeo cells exposed to 1 microM histamine. Loading cells with low concentrations of the cell-permeant esters of the artificial Ca(2+)-buffers EGTA or BAPTA, resulted in fewer cells with a distinct "baseline" oscillatory pattern, and loading with higher concentrations of BAPTA almost completely abolished them. In HeLa-CaBP cells, stimulation with 1 microM histamine resulted in individual Ca(2+) spikes that had a flattened profile when compared to control cells; peak [Ca(2+)](i) was lowered, the rate of increase in [Ca(2+)](i) was slower and transients were prolonged. When compared to HeLa-pCINeo cells, loading with EGTA or BAPTA, or transfection of CaBP, significantly reduced the propagation velocity (by up to 60%) of Ca(2+) waves induced by exposure to 100 microM histamine. We conclude that intracellular Ca(2+) buffering exerts a significant influence on global Ca(2+) responses in HeLa cells and the propagation of Ca(2+) waves that underlie them. The relative effectiveness of different Ca(2+) buffers, including CaBP, appears to be particularly dependent upon the rapidity of their binding kinetics, with BAPTA being the most effective.  相似文献   

9.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

10.
11.
12.
Transient influx of Ca(2+) constitutes an early element of signaling cascades triggering pathogen defense responses in plant cells. Treatment with the Phytophthora sojae-derived oligopeptide elicitor, Pep-13, of parsley cells stably expressing apoaequorin revealed a rapid increase in cytoplasmic free calcium ([Ca(2+)](cyt)), which peaked at approximately 1 microM and subsequently declined to sustained values of 300 nM. Activation of this biphasic [Ca(2+)](cyt) signature was achieved by elicitor concentrations sufficient to stimulate Ca(2+) influx across the plasma membrane, oxidative burst, and phytoalexin production. Sustained concentrations of [Ca(2+)](cyt) but not the rapidly induced [Ca(2+)](cyt) transient peak are required for activation of defense-associated responses. Modulation by pharmacological effectors of Ca(2+) influx across the plasma membrane or of Ca(2+) release from internal stores suggests that the elicitor-induced sustained increase of [Ca(2+)](cyt) predominantly results from the influx of extracellular Ca(2+). Identical structural features of Pep-13 were found to be essential for receptor binding, increases in [Ca(2+)](cyt), and activation of defense-associated responses. Thus, a receptor-mediated increase in [Ca(2+)](cyt) is causally involved in signaling the activation of pathogen defense in parsley.  相似文献   

13.
In this study, the relationship between intracellular calcium stores and depolarization-evoked stimulation was examined in bovine chromaffin cells, using changes in membrane capacitance to monitor both exocytosis and endocytosis. Cells were voltage-clamped using the perforated whole-cell patch configuration to minimize alterations in intracellular constituents. Control cells exhibited reproducible secretory responses each time the cell was stimulated. However, the same stimulation protocol elicited progressively smaller secretory responses in cells where their intracellular calcium store was emptied by thapsigargin. Transient elevation of the intracellular calcium concentration with a brief histamine treatment enhanced subsequent secretory responses in control but not in thapsigargin-treated cells. A series of depolarizations to -20 mV, which allowed small amounts of Ca(2+) influx but which by itself did not trigger catecholamine secretion, enhanced subsequent exocytosis in both control and thapsigargin-treated cells. Caffeine-pretreated cells exhibited a rundown in the secretory response that was similar to that produced by thapsigargin. These results suggest that brief elevations of [Ca(2+)](i) could enhance subsequent secretory responses. In addition, the data suggest that intracellular calcium stores are vital for the maintenance of exocytosis during repetitive stimulation.  相似文献   

14.
Store-operated Ca(2+) entry, stimulated by depletion of intracellular Ca(2+) pools, has not been fully elucidated in vascular smooth muscle cells of pig coronary arteries. Therefore, [Ca(2+)](i) was measured in cultured cells derived from extramural pig coronary arteries using the Fura-2/AM fluorometry. Divalent cation entry was visualized with the Fura-2 Mn(2+)-quenching technique. Ca(2+) stores were depleted either by repetitive stimulation of P2Y purinoceptors with ATP (10 micromol/L), or by the sarcoendoplasmic Ca(2+)-ATPase inhibitor 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ; 1 micromol/L) in Ca(2+)-free medium (EGTA 1 mmol/L). Addition of Ca(2+)(1 mmol/L) induced refilling of ATP-sensitive Ca(2+) stores and an increase in [Ca(2+)](i) in the presence of BHQ. Both could be significantly diminished by Ni(2+)(5 and 1mmol/L), La(3+)(10 micromol/L), Gd(3+)(10 micromol/L), and Mg(2+)(5.1 mmol/L). In contrast to the BHQ-mediated rise in [Ca(2+)](i), refilling of ATP-depleted stores was affected by neither flufenamate (0.1 mmol/L), nor by nitrendipine, nifedipine, and nisoldipine (each 1 micromol/L). The data suggest that after store depletion in pig coronary smooth muscle cells ATP and BHQ may converge on a common, Ni(2+)-, La(3+)-, Gd(3+)-, and Mg(2+)- sensitive Ca(2+) entry pathway, i.e. on a store-operated Ca(2+) entry. An additional contribution of the Na(+)/Ca(2+) exchanger cannot be excluded. Flufenamate-sensitive non-selective cation channels and dihydropyridine-sensitive L-type Ca(2+) channels are not involved in refilling of Ca(2+) stores after previous depletion by repetitive P2Y purinoceptor stimulation. The store-operated Ca(2+) entry in-between repetitive purinoceptor stimulation, i.e. in the absence of the agonist, may be responsible for the maintenance of agonist-induced rhythmic Ca(2+) responses.  相似文献   

15.
We have measured Ca(2+)concentration changes in intracellular Ca(2+)stores ([Ca(2+)](store)) of rat pancreatic acinar cells in primary culture in response to the Ca(2+)mobilizing substances inositol-1,4,5-trisphosphate (IP(3)) and cyclic ADP-ribose (cADPr) using the Ca(2+)-sensitive dye mag Fura-2. We found that in this cell model IP(3)releases Ca(2+)in a quantal manner. Higher Ca(2+)concentration in the stores allowed a response to lower IP(3)concentrations ([IP(3)]) indicating that the sensitivity of IP(3)receptors to IP(3)is regulated by the Ca(2+)concentration in the stores. Cyclic ADPr, that modifies 'Ca(2+)-induced-Ca(2+)-release' (CICR), was also able to release Ca(2+)from intracellular stores of pancreatic acinar cells in primary culture. In comparison to the Ca(2+)ionophore ionomycin, which induced a maximal decrease (100%) in [Ca(2+)](store), a hypermaximal [IP(3)] (10 microM) dropped [Ca(2+)](store)by 87% and cADPr had no further effect. Cyclic ADPr reduced [Ca(2+)](store)by only 56% and subsequent IP(3)addition caused further maximal decrease in [Ca(2+)](store). Furthermore, a maximal [IP(3)] caused the same decrease in [Ca(2+)](store)in all regions of the cell, whereas cADPr dropped the [Ca(2+)](store)between 20 and 80% in different cell regions. From these data we conclude that in primary cultured rat pancreatic acinar cells at least three types of Ca(2+)stores exist. One type possessing both cADPr receptors and IP(3)receptors, a second type possessing only IP(3)receptors, and a third type whose Ca(2+)can be released by ionomycin but neither by IP(3)nor by cADPr.  相似文献   

16.
In most species, cortical granule exocytosis is characteristic of egg activation by sperm. It is a Ca(2+)-mediated event which results in elevation of the vitelline coat to block permanently the polyspermy at fertilization. We examined the effect of mastoparan, an activator of G-proteins, on the sea urchin egg activation. Mastoparan was able to induce, in a concentration-dependent manner, the egg cortical granule exocytosis; mastoparan-17, an inactive analogue of mastoparan, had no effect. Mastoparan, but not sperm, induced cortical granule exocytosis in eggs preloaded with BAPTA, a Ca(2+) chelator. In isolated egg cortical lawns, which are vitelline layers and membrane fragments with endogenously docked cortical granules, mastoparan induced cortical granule fusion in a Ca(2+)-independent manner. By contrast, mastoparan-17 did not trigger fusion. We conclude that in sea urchin eggs mastoparan stimulates exocytosis at a Ca(2+)-independent late site of the signaling pathway that culminates in cortical granule discharge.  相似文献   

17.
Ca(+) stores may regulate multiple components of the secretory pathway. We examined the roles of biochemically independent intracellular Ca(2+) stores on acute and long-term growth hormone (GH) release, storage, and mRNA levels in goldfish somatotropes. Thapsigargin-evoked intracellular Ca(2+) concentration ([Ca(2+)](i)) signal amplitude was similar to the Ca(2+)-mobilizing agonist gonadotropin-releasing hormone, but thapsigargin (2 microM) did not acutely increase GH release, suggesting uncoupling between [Ca(2+)](i) and exocytosis. However, 2 microM thapsigargin affected long-term secretory function. Thapsigargin-treated cells displayed a steady secretion of GH (2, 12, and 24 h), which decreased GH content (12 and 24 h), but not GH mRNA/production (24 h). In contrast to the results with thapsigargin, activating the ryanodine (Ry) receptor (RyR) with 1 nM Ry transiently increased GH release (2 h). Prolonged activation of RyR (24 h) reduced GH release, contents and apparent production, without changing GH mRNA levels. Inhibiting RyR with 10 microM Ry increased GH mRNA levels, production, and storage (2 h). Increasing [Ca(2+)](i) independently of Ca(2+) stores with the use of 30 mM KCl decreased GH mRNA. Collectively, these results suggest that parts of the secretory pathway can be controlled independently by function-specific Ca(2+) stores.  相似文献   

18.
We examined the single channel properties and regulation of store-operated calcium channels (SOCC). In human submandibular gland cells, carbachol (CCh) induced flickery channel activity while thapsigargin (Tg) induced burst-like activity, with relatively lower open probability (NP(o)) and longer mean open time. Tg- and CCh-activated channels were permeable to Na(+) and Ba(2+), but not to NMDG, in the absence of Ca(2+). The channels exhibited similar Ca(2+), Na(+), and Ba(2+) conductances and were inhibited by 2-aminoethoxydiphenylborate, xestospongin C, Gd(3+), and La(3+). CCh stimulated flickery activity changed to burst-like activity by (i) addition of Tg, (ii) using Na(+) instead of Ca(2+), (iii) using Ca(2+)-free bath solution, or (iv) buffering [Ca(2+)](i) with BAPTA-AM. Buffering [Ca(2+)](i) induced a 2-fold increase in NP(o) of Tg-stimulated SOCC. Reducing free [Ca(2+)] in the endoplasmic reticulum with the divalent cation chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), induced burst-like channel activity similar to that seen with CCh + Tg. Thus, SOCC is activated by stimulation of muscarinic receptors, inhibition of the sarcoendoplasmic Ca(2+) pump, and lowering [Ca(2+)] in the internal store. Importantly, SOCC activity depends on [Ca(2+)](i) and the free [Ca(2+)] in the internal store. These novel findings reveal that SERCA plays a major role in the gating of SOCC by (i) refilling the internal Ca(2+) store(s) and (ii) decreasing the [Ca(2+)](i)-dependent inhibition.  相似文献   

19.
EKODE, an epoxy-keto derivative of linoleic acid, was previously shown to stimulate aldosterone secretion in rat adrenal glomerulosa cells. In the present study, we investigated the effect of exogenous EKODE on cytosolic [Ca(2+)] increase and aimed to elucidate the mechanism involved in this process. Through the use of the fluorescent Ca(2+)-sensitive dye Fluo-4, EKODE was shown to rapidly increase intracellular [Ca(2+)] ([Ca(2+)](i)) along a bell-shaped dose-response relationship with a maximum peak at 5 microM. Experiments performed in the presence or absence of Ca(2+) revealed that this increase in [Ca(2+)](i) originated exclusively from intracellular pools. EKODE-induced [Ca(2+)](i) increase was blunted by prior application of angiotensin II, Xestospongin C, and cyclopiazonic acid, indicating that inositol trisphosphate (InsP(3))-sensitive Ca(2+) stores can be mobilized by EKODE despite the absence of InsP(3) production. Accordingly, EKODE response was not sensitive to the phospholipase C inhibitor U-73122. EKODE mobilized a Ca(2+) store included in the thapsigargin (TG)-sensitive stores, although the interaction between EKODE and TG appears complex, since EKODE added at the plateau response of TG induced a rapid drop in [Ca(2+)](i). 9-oxo-octadecadienoic acid, another oxidized derivative of linoleic acid, also increases [Ca(2+)](i), with a dose-response curve similar to EKODE. However, arachidonic and linoleic acids at 10 microM failed to increase [Ca(2+)](i) but did reduce the amplitude of the response to EKODE. It is concluded that EKODE mobilizes Ca(2+) from an InsP(3)-sensitive store and that this [Ca(2+)](i) increase is responsible for aldosterone secretion by glomerulosa cells. Similar bell-shaped dose-response curves for aldosterone and [Ca(2+)](i) increases reinforce this hypothesis.  相似文献   

20.
Pituitary gonadotropes transduce hormonal input into cytoplasmic calcium ([Ca(2+)](cyt)) oscillations that drive rhythmic exocytosis of gonadotropins. Using Calcium Green-1 and rhod-2 as optical measures of cytoplasmic and mitochondrial free Ca(2+), we show that mitochondria sequester Ca(2+) and tune the frequency of [Ca(2+)](cyt) oscillations in rat gonadotropes. Mitochondria accumulated Ca(2+) rapidly and in phase with elevations of [Ca(2+)](cyt) after GnRH stimulation or membrane depolarization. Inhibiting mitochondrial Ca(2+) uptake by the protonophore CCCP reduced the frequency of GnRH-induced [Ca(2+)](cyt) oscillations or, occasionally, stopped them. Much of the Ca(2+) that entered mitochondria is bound by intramitochondrial Ca(2+) buffering systems. The mitochondrial Ca(2+) binding ratio may be dynamic because [Ca(2+)](mit) appeared to reach a plateau as mitochondrial Ca(2+) accumulation continued. Entry of Ca(2+) into mitochondria was associated with a small drop in the mitochondrial membrane potential. Ca(2+) was extruded from mitochondria more slowly than it entered, and much of this efflux could be blocked by CGP-37157, a selective inhibitor of mitochondrial Na(+)-Ca(2+) exchange. Plasma membrane capacitance changes in response to depolarizing voltage trains were increased when CCCP was added, showing that mitochondria lower the local [Ca(2+)](cyt) near sites that trigger exocytosis. Thus, we demonstrate a central role for mitochondria in a significant physiological response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号