首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim This study investigated spatial patterns of endemism in the flora of Namibia's succulent karoo in order to generate information for conservation planning. Location The study area, the Sperrgebiet, comprises the majority of Namibia's portion of the succulent karoo biome which is the south‐west corner of the country. This is an arid area that has been off limits to public access, farming and tourism for nearly a century due to restrictions imposed by the diamond industry. Methods Based on existing distribution records, areas of high concentrations of endemic plants were identified using numbers of endemics and weighted endemics according to area of occupancy. The resolution of the available data was quarter degree squares (15‐min intervals of latitude and longitude grids). Results At the scale of this study straight numbers of endemics generated similar results to the endemics weighted according to area of occupancy, which gives sparsely distributed species a higher weighting. Based on the current distribution records, 17.7% (184 species) of the Sperrgebiet's spermatophyte flora is endemic. The ‘hotspots of endemism’ comprised from north to south: Lüderitz‐Kowisberge, Klinghardt Mountains, Aurusberge‐Heioab, Witpütz, Skorpion and Obib‐Schakalsberge. Taking also areas into account that stand out because of their high proportion of local endemics, this adds Grillental and the central coastal area from Pomona to Baker's Bay to the areas of importance for plant endemism. Main conclusions The Sperrgebiet's endemic flora is special in taxonomic composition in that it does not present a subset of the total flora of this area, but shows a remarkably high representation of the families Mesembryanthemaceae and Liliaceae (sensu lato). Compared with other arid areas, the level of endemism in the Sperrgebiet is high, but not compared with the succulent karoo in general or other hotspots in the succulent karoo biome, such as the Richtersveld. The proportion of local endemics (13.5%) is high compared with some endemism hotspots in southern Africa. Hotspots of plant endemism provide an important tool to contribute to conservation planning studies. This study also highlighted the importance of centralized data bases without which these analyses would not have been possible. Further plant collecting is required to fill presently data‐deficient areas and studies at a finer spatial resolution taking habitat requirements into account are needed to elucidate some of the factors contributing to plant endemism in this area.  相似文献   

2.
Phylogenetic patterns, adaptations and conservation status of the rare species flora of a winter–summer rainfall ecotone in southern Africa were investigated to shed light on the species' evolutionary history and conservation requirements. Some 11% (93 species) of the Greater Fish River Canyon Landscape in Namibia were classified as rare species, more than half currently not receiving formal protection in Namibia. The rare species flora does not present a subset of the overall species pool, but a unique assemblage of plant species, over‐represented by members of the family Mesembryanthemaceae, Crassulaceae, Asphodelaceae and Hyacinthaceae. Low growth forms (dwarf leaf‐succulent shrubs, dwarf stem succulents and dwarf deciduous shrubs) as well as bulbs are more common amongst rare species. Multiple factors and processes, likely interlinked, are believed to be responsible for determining the rare species flora, indicating that individual species respond differently to the challenges posed by this arid environment. Some plants are likely remnants of wetter conditions in the past, which have retained viable populations in the mountainous terrain of this landscape, others may have evolved in situ.  相似文献   

3.
Like island-endemic taxa, whose origins are expected to postdate the appearance of the islands on which they occur, biome-endemic taxa should be younger than the biomes to which they are endemic. Accordingly, the ages of biome-endemic lineages may offer insights into biome history. In this study, we used the ages of multiple lineages to explore the origin and diversification of two southern African biomes whose remarkable floristic richness and endemism has identified them as global biodiversity hotspots (succulent karoo and fynbos). We used parsimony optimization to identify succulent karoo- and fynbos-endemic lineages across 17 groups of plants, for which dated phylogenies had been inferred using a relaxed Bayesian (BEAST) approach. All succulent karoo-endemic lineages were less than 17.5 My old, the majority being younger than 10 My. This is largely consistent with suggestions that this biome is the product of recent radiation, probably triggered by climatic deterioration since the late Miocene. In contrast, fynbos-endemic lineages showed a broader age distribution, with some lineages originating in the Oligocene, but most being more recent. Also, in groups having both succulent karoo- and fynbos-endemic lineages, there was a tendency for the latter to be older. These patterns reflect the greater antiquity of fynbos, but also indicate considerable recent speciation, probably through a combination of climatically-induced refugium fragmentation and adaptive radiation.  相似文献   

4.
Phylogenies of legume taxa are ecologically structured along a tropical seasonality gradient, which suggests phylogenetic niche conservatism. This seasonality gradient spans Neotropical wet forests, savannas, and highly seasonal drought-prone woody vegetation known as the succulent biome. Ecological phylogenetic structure was investigated using a community phylogenetic approach. We further analyzed bioclimatic and other independent variables that potentially explained phylogenetic beta diversity among 466 floristic sites that spanned the savanna and succulent biomes in eastern South America. Explanatory variables were selected using variance inflation factors, information criteria, and the ability to explain both species and phylogenetic beta diversity. A model involving annual precipitation suggests that a threshold of < 1200 mm explains community phylogenetic structure along the savanna–succulent biome transition. Variables involving temperatures or measures of seasonality were notably lacking from top-ranked models. The abundance and diversity of legumes across the tropical seasonality gradient suggest that a high nitrogen metabolism confers an advantage in one of two ways, both of which are related to rapid growth rates. Legumes adapted to the succulent biome may be responding to regular post-dry-season leaf-flush opportunities. Legumes adapted to the savanna biome may be responding to intermittent post-disturbance growing opportunities. A seasonal predominance of leaf flushing by woody plants implicates the role of ecological stability in the succulent biome because of the need to recover the cost of regenerating short-lived leaves. Ecological stability may be the fundamental cause of ecological phylogenetic structure across the tropical seasonality gradient and required for maintaining high levels of both leaf-flushing legume and succulent plant biodiversity.  相似文献   

5.
The ratio of dead to alive succulent shrubs as an indicator of turnover was investigated to test whether the accepted notion of rapid turnover rates and cyclic succession in the Succulent Karoo Biome are applicable in the southern Namib. Based on counts of dead and alive plants, twelve species in two habitat types were investigated. These short‐term data which could not incorporate recruitment rates or changes over time, generated, however, some hypotheses. (i) Rapid turnover rates are likely not supported by all succulent plants at the Succulent Karoo Biome's northern boundary. With the exception of one species, mortality rates in succulent shrubs across a range of plant functional types were lower than reported in other parts of the biome. (ii) Sand plains appeared to support some transient species, indicating that there may be differences in vegetation dynamics between habitats. (iii) Species of different plant functional types showed no differences in ratio of dead to alive plants related to habitat. These species may have broad ecological tolerance limits and are perhaps less affected by changes in their environment. (iv) Shrubby Mesembryanthemaceae have high turnover rates and hence a short live span in the investigated area, but are longer lived than elsewhere in the Succulent Karoo Biome. As these hypotheses have implications for management and conservation of succulent species in this global biodiversity hotspot, a detailed evaluation of vegetation turnover, balancing mortality versus recruitment, should be investigated over a longer time span.  相似文献   

6.
The Addo Elephant National Park in the warm-temperate Eastern Cape was proclaimed in 1931 to protect one of the four elephant populations in South Africa which survived into the present century. However, since the late 1970s, a major objective of the Park is to protect intact a viable example of succulent thicket – the regional ecosystem. Succulent thicket is endemic to the Eastern Cape and forms the major component of the Albany Centre, a floristic region of high diversity and endemism, especially among succulent shrubs and geophytes. This ecosystem is poorly represented in the reserve system and is highly threatened by overgrazing and clearing for agriculture. Under the present stocking rate of more than two elephants/km2, succulent thicket in the Park has been severely impacted: in particular, biomass, stature and plant diversity have been reduced. We show that the flora of the Park is of great regional significance. Of a total of 581 species, 12.4% were classified as regional endemics and/or Red Data Book species (collectively termed 'species of special concern), and 32.2% were not known to be conserved in any other succulent thicket protected area. Relative to the remainder of the flora, both categories of species were over-represented among succulent shrubs (predominantly Euphorbiaceae and Mesembryanthemaceae) and geophytes (predominantly Asphodelaceae and Hyacinthaceae). This taxonomic and biological profile coincides with that of species vulnerable to local extinction as a result of elephant impacts. The Park authorities will need to find a solution to the conflict between maintaining a large population of megaherbivores, and maintaining the structure and diversity of succulent thicket.  相似文献   

7.
Desmet  P.G.  Cowling  R.M. 《Plant Ecology》1999,142(1-2):23-33
We examined patterns of richness and endemism in relation to phylogeny (family membership), growth form and habitat in the flora of an arid (<60 mm annual rainfall), sandy coastal belt between Port Nolloth and Alexander Bay on the north-west coast of Namaqualand, South Africa. This region forms part of the species-rich Succulent Karoo biome. In an area of 750 km2, 300 plant species were recorded with 24% endemnicity. This level of diversity and endemism is exceptionally high for a desert region. Plant distribution is strongly influenced by habitat type. Diversity, especially of endemic species, was concentrated on rocky or unusual (lag-gravel pavements) habitats. Endemics were not random phylogenetic nor biological assemblages. Dwarf leaf-succulent shrubs, especially Mesembryanthemaceae, were significantly over-represented amongst the endemic component. The results are discussed in terms of a model for plant diversification in an arid environment with relatively predictable sources of moisture.  相似文献   

8.
Biome boundaries are expected to be sensitive to changes in climate and disturbance, because it is here that ecological communities are at environmental, ecological or disturbance limits. Using palaeoecology to study ecosystem dynamics at biome boundaries provides opportunities for understanding ecosystem resilience or sensitivity at ecologically meaningful timescales, and under varying climatic and disturbance conditions.The fynbos biome is a megadiverse Mediterranean type shrubland, found only in South Africa, that is threatened by climate change, land-use change and invasion by alien species. We used palaeoecological records from the semi-arid and mesic boundaries of the fynbos biome to test hypotheses regarding ecosystem resilience over timescales of centuries to millennia. We hypothesised that fynbos would expand at its mesic boundary at the expense of afrotemperate forest under drier and / or more fire prone conditions. In contrast, we hypothesised that at the semi-arid boundary, fynbos would expand at the expense of succulent karoo under wetter and cooler and / or more fire-prone conditions. Contrary to our expectations, the fossil pollen record at both biome boundaries showed remarkable stability at centennial - millennial timescales. To explain our results, we generated new hypotheses exploring possible mechanisms that might confer resilience.At the mesic (temperate) boundary, we suggest that decreased seasonality of rainfall during drier phases favoured fire and fynbos persistence, while in wetter periods, increased seasonality of rainfall resulted in enhanced summer drought stress, inhibiting forest expansion. At this boundary, internal reorganisation from grassy to proteoid fynbos states conferred resilience through resistance. At the succulent karoo boundary, we suggest that increased aridity was offset by less seasonality of rainfall, which enhanced biomass and allowed fire to persist, favouring persistence of fynbos. At this boundary, fynbos sensu stricto retreated during arid phases but recovered during climate amelioration, consistent with resilience through recovery. In both cases, this mega-diverse, disturbance-adapted flora provided a range of traits that enabled fynbos to persist despite environmental perturbation. Our findings agree with general observations that for ecosystems in regions of ample resource availability (i.e. at the mesic boundary), biotic interactions and disturbance tend to become more important in ecosystem dynamics, whereas in regions of scarce resources (in this case water scarcity at the semi-arid boundary) abiotic stress is more important. Our findings contribute to debates over the mechanisms that confer resistance and resilience to environmental change. Understanding and conserving the processes and mechanisms underpinning its resilience will be critical to effective conservation planning.  相似文献   

9.
Late Neogene aridification in the Southern Hemisphere caused contractions of mesic biota to refugia, similar to the patterns established by glaciation in the Northern Hemisphere, but these episodes also opened up new adaptive zones that spurred range expansion and diversification in arid‐adapted lineages. To understand these dynamics, we present a multilocus (nine nuclear introns, one mitochondrial gene) phylogeographic analysis of the Bynoe's gecko (Heteronotia binoei), a widely distributed complex spanning the tropical monsoon, coastal woodland, and arid zone biomes in Australia. Bayesian phylogenetic analyses, estimates of divergence times, and demographic inferences revealed episodes of diversification in the Pliocene, especially in the tropical monsoon biome, and range expansions in the Pleistocene. Ancestral habitat reconstructions strongly support recent and independent invasions into the arid zone. Our study demonstrates the varied responses to aridification in Australia, including localized persistence of lineages in the tropical monsoonal biome, and repeated invasion of and expansion through newly available arid‐zone habitats. These patterns are consistent with those found in other arid environments in the Southern Hemisphere, including the South African succulent karoo and the Chilean lowlands, and highlight the diverse modes of diversification and persistence of Earth's biota during the glacial cycles of the Pliocene and Pleistocene.  相似文献   

10.
This study investigates the influence of texture, soil moisture and nutrient status on the growth and survival of seedlings of two typical fynbos (Leucadendron pubescens and Passerina vulgaris) and succulent karoo (Ruschia spp.) species, which grow in the boundary zone between these two vegetation types. Seedlings of each species were grown in shalederived and sandstone‐derived soils and under xeric and mesic regimes. Under the xeric regime, the shale‐derived and sandstone‐derived soils represented fine and coarse‐textured soils, respectively. Under the mesic regime, the same soils represented nutrient‐rich and nutrient‐poor soils, respectively. The seedlings of both fynbos species died rapidly under the xeric regime, irrespective of soil type. In contrast, the succulent karoo seedlings survived for over 77 days without water. Under mesic conditions, the fynbos seedlings grew faster than the succulent karoo seedlings, irrespective of soil type. Fynbos seedlings appear to be directly limited by the environment (moisture and salinity), whereas succulent karoo seedlings may be limited by interactions with other plants.  相似文献   

11.
Plant species richness, endemism, and genetic resources in Namibia   总被引:1,自引:0,他引:1  
Namibia is a floristically diverse, arid to mesic country, with several highly distinct taxa. Including naturalized plants, there are about 4334 vascular plant species and infraspecific taxa within the country's borders, a substantial increase from the existing major reference work. Dominant families are the Poaceae (422species), Fabaceae (377), Asteraceae (385) and Mesembryanthemaceae (177). Freshwater algae and most other groups of lower plants remain poorly known. Concentrations of plant species richness are found in the Succulent Karoo biome, Kaokoveld, Otavi highland/Karstveld area, Okavango Basin, and Khomas highlands. Recent studies have led to a new estimate of 687 endemic plant species, defined as those contained wholly within Namibia's borders, amounting to about 17% of the Namibian flora. At least a further 275 species are Namib Desert endemics shared between the Kaokoveld and southern Angola (75spp.) and between the Succulent Karoo and northwestern South Africa (200spp.). Research on plant genetic resources is focused on species of potential or actual agricultural importance, such as pearl millet, Pennisetum glaucum, and cucurbits. Many wild plants have considerable genetic diversity and development potential. Primary threats to plant diversity fall in the category of poor land management and inappropriate development.  相似文献   

12.
Species complexes of widespread African vertebrates that include taxa distributed across different habitats are poorly understood in terms of their phylogenetic relationships, levels of genetic differentiation and diversification dynamics. The Fork‐tailed Drongo (Dicrurus adsimilis) species complex includes seven Afrotropical taxa with parapatric distributions, each inhabiting a particular bioregion. Various taxonomic hypotheses concerning the species limits of the Fork‐tailed Drongo have been suggested, based largely on mantle and upperpart coloration, but our understanding of diversity and diversification patterns remains incomplete. Especially given our lack of knowledge about how well these characters reflect taxonomy in a morphologically conservative group. Using a thorough sampling across Afrotropical bioregions, we suggest that the number of recognized species within the D. adsimilis superspecies complex has likely been underestimated and that mantle and upperpart coloration reflects local adaptation to different habitat structure, rather than phylogenetic relationships. Our results are consistent with recent phylogeographic studies of sub‐Saharan African vertebrates, indicating that widespread and often morphologically uniform species comprise several paraphyletic lineages, often with one or more of the lineages being closely related to phenotypically distinct forms inhabiting a different, yet geographically close, biome.  相似文献   

13.
The Australian fossil record shows that from ca. 25 Myr ago, the aseasonal-wet biome (rainforest and wet heath) gave way to the unique Australian sclerophyll biomes dominated by eucalypts, acacias and casuarinas. This transition coincided with tectonic isolation of Australia, leading to cooler, drier, more seasonal climates. From 3 Myr ago, aridification caused rapid opening of the central Australian arid zone. Molecular phylogenies with dated nodes have provided new perspectives on how these events could have affected the evolution of the Australian flora. During the Mid-Cenozoic (25-10 Myr ago) period of climatic change, there were rapid radiations in sclerophyll taxa, such as Banksia, eucalypts, pea-flowered legumes and Allocasuarina. At the same time, taxa restricted to the aseasonal-wet biome (Nothofagus, Podocarpaceae and Araucariaceae) did not radiate or were depleted by extinction. During the Pliocene aridification, two Eremean biome taxa (Lepidium and Chenopodiaceae) radiated rapidly after dispersing into Australia from overseas. It is clear that the biomes have different histories. Lineages in the aseasonal-wet biome are species poor, with sister taxa that are species rich, either outside Australia or in the sclerophyll biomes. In conjunction with the fossil record, this indicates depletion of the Australian aseasonal-wet biome from the Mid-Cenozoic. In the sclerophyll biomes, there have been multiple exchanges between the southwest and southeast, rather than single large endemic radiations after a vicariance event. There is need for rigorous molecular phylogenetic studies so that additional questions can be addressed, such as how interactions between biomes may have driven the speciation process during radiations. New studies should include the hitherto neglected monsoonal tropics.  相似文献   

14.
Antje Burke 《Flora》2013,208(5-6):321-329
Succulent plants in arid areas are believed to be often associated with high altitudes, except where they form the dominant, zonal vegetation such as in the Succulent Karoo Biome of southern Africa. To test this hypothesis the contribution of perennial succulents to inselberg floras was investigated on twenty-two isolated mountains (inselbergs) at four study sites (Etendeka–Barab: 19°34′ S/13°42′ E; Spitzkoppe: 21°49′ S/15°09′ E; Namibrand: 25°17′ S/15°47′ E; and Sperrgebiet: 27°43′ S/16°04′ E) along a nearly 1000 km bioclimatic gradient in the Namib Desert and adjacent areas, from the Succulent Karoo in the south to the northern Namib, and along altitude gradients.The contribution of succulents to the flora clearly increased with altitude at the two central study sites, thus showing a hump-shaped trend along the bioclimatic gradient. No such correlation was found at the northern and southern end of the bioclimatic gradient. The surrounding (rocky) lowlands likely resulted in a more even distribution of succulents throughout the landscape in the north, while the position in the heartland of the succulent flora in southern Africa at the southern-most site, levelled out potential patterns related to altitude. Nevertheless, even here, a fair number of succulents restricted to mountain habitats occur. This is the case in all other study sites, where succulents restricted to mountain habitats are always present.Some perennial succulents, such as Aridaria noctiflora, Euphorbia gummifera and Tetragonia reduplicata indicate an upward movement with increasing distance from the Succulent Karoo, by growing on plains and lowlands in the Succulent Karoo, but only on inselbergs at study sites north of the Succulent Karoo.Many of the mountain specialist succulents are sought after by plant collectors, such as species of Conophytum, Crassula and Lithops. Protecting and monitoring vulnerable populations as well as growing these in horticulture may help to alleviate the pressure on some of these rare species in nature. Preserving genetic material of isolated populations from mountain tops ex situ is another important conservation measure, and particularly important in the view of anticipated climatic change.  相似文献   

15.
This study uses phylogeny‐based measures of evolutionary potential (phylogenetic diversity and community structure) to evaluate the evolutionary value of vascular plant genera endemic to Chile. Endemicity is regarded as a very important consideration for conservation purposes. Taxa that are endemic to a single country are valuable conservation targets, as their protection depends upon a single government policy. This is especially relevant in developing countries in which conservation is not always a high resource allocation priority. Phylogeny‐based measures of evolutionary potential such as phylogenetic diversity (PD) have been regarded as meaningful measures of the “value” of taxa and ecosystems, as they are able to account for the attributes that could allow taxa to recover from environmental changes. Chile is an area of remarkable endemism, harboring a flora that shows the highest number of endemic genera in South America. We studied PD and community structure of this flora using a previously available supertree at the genus level, to which we added DNA sequences of 53 genera endemic to Chile. Using discrepancy values and a null model approach, we decoupled PD from taxon richness, in order to compare their geographic distribution over a one‐degree grid. An interesting pattern was observed in which areas to the southwest appear to harbor more PD than expected by their generic richness than those areas to the north of the country. In addition, some southern areas showed more PD than expected by chance, as calculated with the null model approach. Geological history as documented by the study of ancient floras as well as glacial refuges in the coastal range of southern Chile during the quaternary seem to be consistent with the observed pattern, highlighting the importance of this area for conservation purposes.  相似文献   

16.
We use a comprehensive subset of Canarian angiosperms corresponding to 23 families, 35 genera and 60 Canarian endemic taxa to test whether this flora is suitable to taxonomic identification with the two proposed plant DNA barcode sequences and whether these sequences may reveal the existence of cryptic species overlooked by morphology. The rate of discrimination success between the insular congeneric samples using the rbcL+matK combination and a ‘character‐based’ approach (where we use only the combination of nucleotide positions in an alignment that allows unambiguous species identification) is higher (82.29%) than that obtained with the ‘distance‐based’ approach (80.20%) used by the CBOL Plant Working Group in 2009 and also when compared with tests conducted in other floras. This suggests that the molecular identification of the Canarian endemic flora can be achieved as successfully as in other floras where the incidence of radiation is not as relevant. The facts that (i) a distance‐based criterion was unable to discriminate between congeneric and conspecific comparisons and (ii) only the character‐based discrimination criterion resolved cases that the distance‐based criterion did not, further support the use of a character discrimination approach for a more efficient DNA barcoding of floras from oceanic islands like the Canaries. Thus, a barcoding gap seems not to be necessary for the correct molecular characterization of the Canarian flora. DNA barcodes also suggest the possible existence of cryptic taxa to be further investigated by morphology and that the current taxonomic status of some of the taxa analysed may need revision.  相似文献   

17.
Madagascar is renowned for its unparalleled species richness and levels of endemism, which have led, in combination with species extinction caused by an unprecedented rate of anthropogenic deforestation, to its designation as one of the most important biodiversity hotspots. It is home to 10 650 species (84% endemic) of angiosperms in 1621 genera (19% endemic). During the last two centuries, botanists have focused their efforts on the provision of a taxonomic framework for the flora of the island, but much remains to be investigated regarding the evolutionary processes that have shaped Madagascan botanical diversity. In this article, we review the current state of phylogenetic and biogeographical knowledge of the endemic angiosperm genera. We also propose a new stratified biogeographical model, based on palaeogeographical evidence, allowing the inference of the spatio‐temporal history of Madagascan taxa. The implications of past climate change and extinction events on the evolutionary history of the endemic genera are also discussed in depth. Phylogenetic information was available for 184 of the 310 endemic genera (59.3%) and divergence time estimates were available for 67 (21.6%). Based on this evidence, we show the importance of phylogenetic clustering in the assemblage of the current Madagascan diversity (26% of the genera have a sister lineage from Madagascar) and confirm the strong floristic affinities with Africa, South‐East Asia and India (22%, 9.1% and 6.2% of the genera, respectively). The close links with the Comoros, Mascarenes and Seychelles are also discussed. These results also support an Eocene/Oligocene onset for the origin of the Madagascan generic endemic flora, with the majority arising in the Miocene or more recently. These results therefore de‐emphasize the importance of the Gondwanan break‐up on the evolution of the flora. There is, however, some fossil evidence suggesting that recent extinctions (e.g. Sarcolaenaceae, a current Madagascan endemic, in southern Africa) might blur vicariance patterns and favour dispersal explanations for current biodiversity patterns. © 2013 The Linnean Society of London  相似文献   

18.
Aim Speciation processes on islands are still poorly understood. Previous studies based on the analysis of distribution data from checklists found that the flora of the Azores archipelago differs from other island floras in the exceptionally low number of radiations and the low number of single‐island endemics. The general mechanism(s) responsible for these apparently unique patterns remained unclear. One possible explanation for the distinctiveness of the Azorean endemic flora is the lack of a consistent and critical taxonomic framework for the floras of the Atlantic archipelagos. In this study, molecular variation within a range of Azorean endemic plant lineages was analysed to determine whether inadequacies in the current taxonomy of endemics might be an explanation for the unusual diversity patterns observed in the endemic flora of the Azores. Location Azores archipelago. Method Sixty‐nine populations of eight endemic species or subspecies belonging to five genetic lineages were sampled from all Azorean islands but one. Nuclear and plastid DNA regions were sequenced, and relationships among internal transcribed spacer (ITS) region ribotypes established using statistical parsimony. Results Molecular diversity patterns differ from current taxonomic groupings, with all lineages comprising previously overlooked genetic entities. Main conclusions Recognition as distinct taxa of the genetically distinct entities discovered in this study would drastically change the diversity patterns and make them more similar to those of other Atlantic archipelagos. The results serve to highlight that current knowledge of endemic diversity on oceanic islands may be far from complete, even in relatively well‐known groups such as angiosperms. This limitation is rarely considered in macroecological and evolutionary studies that make use of data from taxonomic checklists to draw inferences about oceanic island biogeographic processes.  相似文献   

19.
Question: What is the relative importance of environmental and spatial factors for species compositional and phylogenetic turnover? Location: High‐rainfall zone of the Southwest Australian Floristic Region (SWAFR). Methods: Correlates of species compositional turnover were assessed using quadrat‐based floristic data, and establishing relationships with environmental and spatial factors using canonical correspondence analyses and Mantel tests. Between‐quadrat phylogenetic distance measures were computed and examined for correlations with environmental and spatial attributes. Processes structuring pa2t2terns of beta diversity were also evaluated within four broad floristic assemblages defined a priori. Results: Floristic diversity was strongly related to environmental attributes. A low significance of spatial variables on assemblage patterns suggested no evident effect of dispersal limitations. Species compositional turnover was especially high within the swamp and outcrop assemblage. Phylogenetic turnover was closely coupled to species compositional turnover, implying the occurrence of many locally endemic and phylogenetically relict taxa. Beta diversity patterns within assemblages were also significantly correlated with the local environment, and relevant correlates differed between floristic assemblage types. Conclusion: Phylogenetic diversity in the SWAFR high‐rainfall zone is clustered within edaphic microhabitats in a generally subdued landscape. A clustered rather than dispersed distribution of phylogenetic diversity increases the probability of significant plant diversity loss during periods of climate change. Climate change susceptibility of the region's flora is accordingly estimated to be high. We highlight the conservation significance of swamp and outcrops that are characterized by distinct hydrological properties and may provide refugial habitat for plant diversity during periods of moderate climate change.  相似文献   

20.
Molecular phylogenetic studies have become a major area of interest in plant systematics, and their impacts on historical biogeographic hypotheses are not to be disregarded. In Brazil, most historical biogeographic studies have relied on animal phylogenies, whereas plant biogeographic studies have largely lacked a phylogenetic component, having a limited utility for historical biogeography. That country, however, is of great importance for most biogeographic studies of lowland tropical South America, and it includes areas from a number of biogeographic regions of the continent. Important biogeographic reports have been published as part of phylogenetic studies, taxonomic monographs, and regional accounts for small areas or phytogeographic domains, but the available information is subsequently scattered and sometimes hard to find. In this paper we review some relevant angiosperm biogeographic studies in Brazil. Initially we briefly discuss the importance of other continents as source areas for the South American flora. Then we present a subdivision of Brazil into phytogeographic domains, and we cite studies that have explored the detection of biogeographic units (areas of endemism) and how they are historically related among those domains. Examples of plant taxa that could be used to test some biogeographic hypotheses are provided throughout, as well as taxa that exemplify several patterns of endemism and disjunction in the Brazilian angiosperm flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号