首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
A period of immobility following chemically (picrotoxin, metrazol) or electrically-activated (maximal electroshock) convulsions was demonstrated to possess features of neuroleptic-type catalepsy. During postictal immobility rats had vivid righting and corneal reflexes and responded t to the tail-oinch. Like haloperidol-pretreated animals they were able to remain on the vertical grid or horizontal bar for 15–60 sec or longer. Ten-fifteen minutes after seizure when catalepsy was minimal or not detectable, animals became totally unresponsive to pressure applied to the tail (“delayed analgesia”). Systematically administered haloperidol (0.25–2 mg/kg) did not affect postictal catalepsy while naloxone (5–10 mg/kg) and apomorphine (10 mg/kg) reduced the duration of the immobility period. Unlike naloxone, apomorphine diminished the intensity of cataleptic behavior. Higher doses of naloxone (20–70 mg/kg) when injected during the postictal period induced violent convulsions. None of the two drugs antagonized delayed analgesia.Daily administration of electroshock caused a build up of postictal rigidity and analgesia, coexisting with symptoms of catalepsy. Naloxone antagonised rigidity but failed to interfere with catalepsy and analgesia.  相似文献   

2.
Some in vivo agonist and antagonist properties of the putative k-compound bremazocine were characterized in rats. Bremazocine, at doses from 0.015-32 mg/kg i.p., delayed nociceptive reaction on a 55 degrees C hot-plate with a dose-response curve not readily fitting a single straight line; this effect was antagonized by high doses of naloxone. In the same rats bremazocine did not delay the intestinal transit of a charcoal meal fed 5 min earlier and prevented morphine-induced constipation. This antagonism appeared to be opioid-specific and competitive, with apparent pA2 value 8.56. Catatonia induced by etorphine (0.004 mg/kg s.c.) and constipation induced by etorphine (0.004 mg/kg s.c.) and D-Ala2-D-Leu5-enkephalin (0.1 mg/kg i.p.) were completely antagonized by bremazocine (0.03-8 mg/kg i.p.). Antinociception induced by morphine (10 mg/kg i.v.) and etorphine (0.004 mg/kg s.c.) was only partly prevented. Naloxone (1 mg/kg) and bremazocine (0.015-1 mg/kg i.p.) precipitated a withdrawal syndrome, evaluated as jumping frequency, in rats rendered dependent to morphine. These data suggest the involvement of more than one opioid receptor population in bremazocine action in vivo.  相似文献   

3.
1,2,3,4-Tetrahydroisoquinolines, among them the most interesting neuroprotective substance, an inhibitor of MAO, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), are endogenous compounds present in the central nervous system of mammals and humans. In this study, we investigated the effect of 1MeTIQ on morphine-induced analgesia, tolerance and abstinence syndrome as well as its effect on morphine-induced changes in dopamine metabolism in rat brain structures (nucleus accumbens, striatum, substantia nigra) using HPLC methodology. The experiments were carried out on male Wistar rats. Morphine analgesia was measured in the "hot-plate" test. To induce tolerance, morphine was given chronically (20 mg/kg i.p.) alone or following 1MeTIQ (50 mg/kg i.p.) injection. The development of dependence was assessed in the naloxone (2 mg/kg i.p.) precipitation test, after 10 days of morphine administration. The behavioral studies have shown that an endogenous compound, 1MeTIQ produced strong potentiation of morphine analgesia, prevented the development of morphine tolerance and inhibited expression of morphine abstinence syndrome in morphine-dependent rats. In neurochemical studies, we have demonstrated that 1MeTIQ antagonized morphine-induced changes in dopamine metabolism observed in rat brain structures. The main finding of this study was demonstration for the first time of an anti-abuse effect of an endogenous compound, 1MeTIQ, and its efficiency in counteracting morphine-induced addiction in the way useful from clinical point of view. The obtained results suggested a possibility of clinical application of 1MeTIQ in morphine addiction.  相似文献   

4.
Imidazobenzodiazepine (Ro 15-1788, 5 mg/kg) similarly to a lose dose of apomorphine (0.1 mg/kg) decreased the intensity of footshock aggression in male rats. Ro 15-1788 significantly potentiated the antiaggressive action of apomorphine. Pirenperone (0.01 mg/kg) potentiated the effect of both drugs, whereas haloperidol (0.01 mg/kg) had an opposite action. After long-term treatment with apomorphine and Ro 15-1788 the tolerance to their antiaggressive action developed. This change was in agreement with increased serotonin metabolism in the forebrain. Unlike the action on aggressive behavior, Ro 15-1788 similarly to haloperidol (0.05 mg/kg) decreased the motor depressant effect of apomorphine (0.01 mg/kg) in mice. This effect correlated with the lowered serotonin metabolism after Ro 15-1788 administration. Unlike apomorphine, Ro 15-1788 reversed catalepsy induced by haloperidol (0.25 mg/kg). Administration of pirenperone (0.03 mg/kg) and destruction of serotoninergic terminals by p-chloroamphetamine (2 X 15 mg/kg) significantly potentiated the sedative action of apomorphine. It appears that different action of Ro 15-1788 on behavioral effects of apomorphine is related to different influence of Ro-1788 on serotoninergic processes in the striatum and limbic structures.  相似文献   

5.
P Worms  K G Lloyd 《Life sciences》1978,23(5):475-477
Direct (muscimol) or indirect (aminooxyacetic acid, diaminobutyric acid, pyrrolidinone) GABA-mimetic compounds significantly potentiate neuroleptic induced catalepsy in rats. In contrast at subconvulsant doses, direct (bicuculline, picrotoxinin and indirect (allylglycine) GABA antagonists antagonized haloperidol-induced catalepsy. The effect of bicuculline and picrotoxinin was biphasic with the lowest doses increasing catalepsy. These results indicate that GABA mechanisms are involved in the induction of catalepsy by neuroleptics.  相似文献   

6.
The effect of indomethacin 3 mg/kg on levels of homovanillic acid (HVA), 4-hydroxy-3-methoxy phenyl ethylene glycol (HMPG) and 5-hydroxy indol acetic acid (5HIAA) was studied in rat striatum and olfactory tubercle with and without pretreatment with morphine 10 mg/kg. Indomethacin caused a small decrease in resting levels of HVA in striatum but not in olfactory tubercle. No effects were seen on resting or morphine induced changes in the levels of these monoamine metabolites. Likewise indomethacin 20 mg/kg failed to alter the elevation of HVA induced by chlorpromazine 15 mg/kg or the decrease of HVA induced by apomorphine (1–10 mg/kg) in the rat striatum. Our results do not support a major role for endogenous prostaglandins in the modulation of monoamine neurotransmission in the rat brain.  相似文献   

7.
The effect of indomethacin 3 mg/kg on levels of homovanillic acid (HVA), 4-hydroxy-3-methoxy phenyl ethylene glycol (HMPG) and 5-hydroxy indol acetic acid (5HIAA) was studied in rat striatum and olfactory tubercle with and without pretreatment with morphine 10 mg/kg. Indomethacin caused a small decrease in resting levels of HVA in striatum but not in olfactory tubercle. No effects were seen on resting or morphine induced changes in the levels of these monoamine metabolites. Likewise indomethacin 20 mg/kg failed to alter the elevation of HVA induced by chlorpromazine 15 mg/kg or the decrease of HVA induced by apomorphine (1--10 mg/kg) in the rat striatum. Our results do not support a major role for endogenous prostaglandins in the modulation of monoamine neurotransmission in the rat brain.  相似文献   

8.
Rats received 7 daily injections with baclofen (40 mg/kg), GBL (750 mg/kg) or HA-966 (100 mg/kg). Dopamine (DA) was measured in the striatum and olfactory tubercle (OT) of rats, sacrificed 0.5 h or 1 h after the last injection. Marked tolerance and cross-tolerance for the DA-elevating effect of these drugs was seen in the striatum, but not in OT. When on day 7 a unilateral lesion of the nigrostriatal pathway was made, also some tolerance to the DA increase in the striatum on the lesioned side was seen in HA-966-pretreated rats, but it was small compared to the tolerance after an additional drug administration in non-lesioned animals. A low dose of apomorphine (0.25 mg/kg, i.p.) had no effect on DA, dihydroxyphenylacetic acid DOPAC) or homovanillic acid (HVA) levels in the lesioned striata, whether the rats had been pretreated for 6 days with HA-966 or not. However, this dose of apomorphine had a significantly more lowering effect on striatal DOPAC and HVA levels on the unlesioned side of HA-966 pretreated rats. The results show that tolerance develops to the increase of DA synthesis, which is possibly receptor-mediated. This tolerance develops more readily in the striatum than in the olfactory tubercle.  相似文献   

9.
Dextromethorphan, a noncompetitive blocker of N-methyl-D- aspartate (NMDA) type of glutamate receptor, at 7.5-75 mg/kg, ip did not induce oral stereotypies or catalepsy and did not antagonize apomorphine stereotypy in rats. These results indicate that dextromethorphan at 7.5-75 mg/kg does not stimulate or block postsynaptic striatal D2 and D1 dopamine (DA) receptors. Pretreatment with 15 and 30 mg/kg dextromethorphan potentiated dexamphetamine stereotypy and antagonised haloperidol catalepsy. Pretreatment with 45, 60 and 75 mg/kg dextromethorphan, which release 5-hydroxytryptamine (5-HT), however, antagonised dexamphetamine stereotypy and potentiated haloperidol catalepsy. Apomorphine stereotypy was not potentiated or antagonised by pretreatment with 7.5-75 mg/kg dextromethorphan. This respectively indicates that at 7.5-75 mg/kg dextromethorphan does not exert facilitatory or inhibitory effect at or beyond the postsynaptic striatal D2 and D1 DA receptors. The results are explained on the basis of dextromethorphan (15-75 mg/kg)-induced blockade of NMDA receptors in striatum and substantia nigra pars compacta. Dextromethorphan at 15 and 30 mg/kg, by blocking NMDA receptors, activates nigrostriatal dopaminergic neurons and thereby potentiates dexampetamine stereotypy and antagonizes haloperidol catalepsy. Dextromethorphan at 45, 60 and 75 mg/kg, by blocking NMDA receptors, releases 5-HT and through the released 5-HT exerts an inhibitory influence on the nigrostriatal dopaminergic neurons with resultant antagonism of dexampetamine stereotypy and potentiation of haloperidol catalepsy.  相似文献   

10.
The present study focused upon the role of SB-334867, an orexin-1 receptor antagonist, in the acquisition of morphine-induced sensitization to locomotor activity in mice. Behavioral sensitization is an enhanced systemic reaction to the same dose of an addictive substance, which assumingly increases both the desire for the drug and the risk of relapse to addiction. Morphine-induced sensitization in mice was achieved by sporadic doses (five injections every 3 days) of morphine (10 mg/kg, i.p.), while a challenge dose of morphine (10 mg/kg) was injected 7 days later. In order to assess the impact of orexin system blockade on the acquisition of sensitization, SB-334867 was administered before each morphine injection, except the morphine challenge dose. The locomotor activity test was performed on each day of morphine administration. Brain structures (striatum, hippocampus, and prefrontal cortex) were collected after behavioral tests for molecular experiments in which mRNA expression of orexin, dopamine, and adenosine receptors was explored by the qRT-PCR technique. Additionally, the mRNA expression of markers, such as GFAP and Iba-1, was also analyzed by the same technique. SB-334867 inhibited the acquisition of morphine-induced sensitization to locomotor activity of mice. Significant alterations were observed in mRNA expression of orexin, dopamine, and adenosine receptors and in the expression of GFAP and Iba-1, showing a broad range of interactions in the mesolimbic system among orexin, dopamine, adenosine, and glial cells during behavioral sensitization. Summing up, the orexin system may be an effective measure to inhibit morphine-induced behavioral sensitization.  相似文献   

11.
Di Giannuario A  Pieretti S 《Peptides》2000,21(7):1125-1130
The effects induced by nociceptin on morphine-induced release of dopamine (DA), 3,4-dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and nucleus caudate were studied in rats by microdialysis with electrochemical detection. Nociceptin administered intracerebroventricularly (i.c.v.) at doses of 2, 5 and 10 nmol/rat changed neither DA nor metabolites release in the shell of the nucleus accumbens or in the nucleus caudate. Morphine administered intraperitoneally (i.p.) (2, 5, and 10 mg/kg) increased DA and metabolites release more in the shell of the nucleus accumbens than in the nucleus caudate. When nociceptin (5 or 10 nmol) was administered 15 min before morphine (5 or 10 mg/kg), it significantly reduced morphine-induced DA and metabolites release in the shell of the nucleus accumbens, whereas only a slight, nonsignificant reduction was observed in the nucleus caudate. Our data indicate that nociceptin may regulate the stimulating action associated with morphine-induced DA release more in the nucleus accumbens than in the nucleus caudate, and are consistent with recent observations that nociceptin reversed ethanol- and morphine-induced conditioned place preference. Therefore, the nociceptin-induced reduction of DA release stimulated by morphine in the nucleus accumbens, and the results obtained with nociceptin in the conditioned place preference procedure suggest a role for nociceptin in the modulation of the behavioral and neurochemical effects of abuse drugs.  相似文献   

12.
The measurement of step-down latency in passive avoidance has been used to study memory in laboratory animals. The pre-training injection of 5 mg/kg morphine impaired memory, which was restored when 24 h later the same dose of the drug was administered. To explore the possible involvement of NMDA modulators on morphine-induced memory impairment, we have investigated the effects of intracerebroventricular (i.c.v.) administration of NMDA and the competitive NMDA antagonist, DL-AP5, on morphine-induced memory impairment or recall, on the test day. Morphine (5 mg/kg, s.c.) was administered 30 min before training to induce impairment of memory and 24 h later, 30 min before test to improve it. Pre-test administration of NMDA (0.00001, 0.0001 and 0.001 microg/mouse, i.c.v.) did not alter the retention latency compared to the saline-treated animals. But restored the memory impairment induced by pre-training morphine (5 mg/kg, s.c.). Pre-test administration of DL-AP5 (1, 3.2 and 10 microg/mouse, i.c.v.) by itself decreased the retention latencies. The same doses of DL-AP5 increased pre-training morphine-induced memory impairment. Co-administration of NMDA (0.0001 and 0.001 microg/mouse, i.c.v.) and morphine (5 mg/kg, s.c.) on the test day increased morphine memory improvement. Conversely, DL-AP5 (1, 3.2 and 10 microg/mouse, i.c.v.) inhibited morphine-induced memory recall. It is concluded that NMDA receptors may be involved, at least in part, in morphine state-dependent learning in mice.  相似文献   

13.
《Life sciences》1995,56(17):PL339-PL344
The conditioned place preference paradigm is commonly used to study the reinforcing properties of various drugs. In the present study, the effect of adrenalectomy (ADX) on the morphine-induced place preference was examined in rats. Morphine produced a significant preference for the drug-associated place in sham-operated (sham) and ADX rats. In sham rats, only the highest dose of morphine (8 mg/kg, i.p.) produced a significant preference, while in ADX rats, lower doses of morphine (1 and 2 mg/kg, i.p.) produced a significant preference for the drug-associated place. Furthermore, the morphine-induced place preference was blocked by the dopamine D1 antagonist SCH23390 in both sham and ADX rats. On the other hand, the cocaineinduced place preference was not affected by ADX. In the present study, we found that ADX potentiates the reinforcing effect induced by morphine, but not that induced by cocaine, which suggests that the enhancement by ADX may be due to a change in opioid receptors, morphine metabolism and/or some other cause, but not to a change in dopamine receptors.  相似文献   

14.
Ceruletide (CLT: 160 micrograms/kg, SC) produced a relatively long-lasting inhibition of haloperidol (HPD: 2 mg/kg, PO) catalepsy in rats. Neither bilateral vagotomies nor hypophysectomy abolished the anticataleptic effect of CLT. However, (-)-L-364,718 and proglumide blocked the effect of CLT. CLT (160 micrograms/kg) significantly inhibited HPD (2 mg/kg)-induced increase in dopamine (DA) release from the rat striatum. This effect of CLT was also antagonized by proglumide. These results suggest that CLT (160 micrograms/kg) primarily acts on cholecystokinin-A receptor in the brain, exerts some modulatory influence on HPD binding to striatal DA receptors via unknown neural pathways and, consequently, inhibits HPD catalepsy.  相似文献   

15.
Evidence has been accumulated implicating sex hormones as possible modulators of extrapyramidal motor function. In the present study we have investigated the effects of estrogens, progesterone, testosterone, prolactin and calcitonin on behavioral parameters related to nigro-striatal dopaminergic system, such as haloperidol-induced catalepsy in male rats. It was found that 7-days estradiol benzoate treatment (5 micrograms/rat/day) significantly increases haloperidol-induced catalepsy, suggesting a possible antidopaminergic activity of estrogens. On the other hand, prolactin facilitates nigro-striatal dopaminergic transmission. Interestingly, 7 day treatment with medroxy-acetate progesterone (MAP, 5 mg/Kg, i.p.) brings about a trend to a decrease in haloperidol-induced catalepsy, while no significantly effect was observed following acute MAP administration at the same dose. So, it is tempting to speculate that chronic progestinic treatment may result in an increase in dopaminergic tonus. Testosterone, acutely administered (5mg/kg.s.c.) induces changes similar to those observed following progesterone administration. Finally, also calcitonin is able to influence haloperidol-induced catalepsy by markedly increasing it.  相似文献   

16.
Quipazine and pirenperone , the drugs interacting with serotonin2 -receptors, more readily displaced 3H-spiroperidol from its binding sites in the frontal cortex than in the striatum. Pirenperone (0,07-0,3 mg/kg), antagonist of serotonin2 -receptors, selectively decreased the intensity of apomorphine aggressiveness. The antiaggressive action of haloperidol (0,01-0,2 mg/kg) was in correlation with its antistereotypic activity. Long-term administration of naloxone (0,5; 15,0 mg/kg), together with apomorphine (0,5 mg/kg) reduced the number of head-twitches caused by quipazine (2,5 mg/kg). The administration of quipazine 48 hours after the last injection of naloxone and apomorphine caused spontaneous aggressiveness that did not differ from apomorphine aggressiveness. Intracerebroventricular injection of cholecystokinin tetrapeptide (CCK-4) markedly enhanced the foot-shock aggression. The same dose of CCK-4 also decreased the intensity of quipazine (2,5 mg/kg) head-twitches. Compared to haloperidol, pirenperone was a more selective antagonist of CCK-4. After long-term apomorphine treatment (0,5 mg/kg during 10 days, twice daily), the effect of CCK-4 on aggressive behaviour was markedly enhanced. It is possible that two subtypes of serotonin2 -receptors exist in the brain and have opposite action on the aggressive behaviour. CCK-4 may play the role of an endogenous modulator of sensitivity of serotonin2 -receptors involved in the control of aggressiveness.  相似文献   

17.
The morphine withdrawal syndrome was studied in male Wistar rats. Spontaneous aggressiveness, enhanced apomorphine aggressiveness, lowered pain threshold and decreased dopamine turnover were observed after withdrawal of 10-day treatment with the increasing doses of morphine (30-300 mg/kg). These changes attested to the increased sensitivity of dopamine receptors. Administration of morphine in conjunction with lithium chloride in a dose of 2 mekv/kg prevented the development of dopamine receptor hypersensitivity. Also, this method did not produce the increased spontaneous and apomorphine aggressiveness or the decreased dopamine turnover. Meanwhile the pain threshold remained lowered.  相似文献   

18.
We evaluated the effects of pretreatment with clorgyline, an irreversible monoamine oxidase (MAO)-A inhibitor, on morphine-induced hyperlocomotion and antinociception. A single administration of morphine (30 mg/kg, i.p.) to male ICR mice induced a hyperlocomotion. ANOVA analysis revealed the statistical significance of the morphine effect on horizontal locomotion and of the clorgyline pretreatment × morphine interaction effect, but not of the effect of clorgyline pretreatment. The initial (5 min after challenge) phase of morphine actions vs. saline challenge appeared as if morphine had a strong inhibitory effect on locomotor activity in combination with different doses of clorgyline. The mice administered with morphine in combination of clorgyline (1 and 10 mg/kg) did not show any stereotypic behaviors. Clorgyline at a dose of 0.1 mg/kg but not other doses tested significantly potentiated morphine-induced antinociception evaluated by tail flick but not hot plate test. During the measurements of locomotor activity and antinociception, clorgyline at doses of 1 and 10 mg/kg significantly inhibited monoamine metabolism through MAO. These results suggest that clorgyline showed an inhibitory effect on morphine-induced hyperlocomotion, but not antinociception, through MAO inhibition. There is not a possibility that clorgyline pretreatment enhanced morphine action on motor activity, resulting in the abnormal behavior from hyperlocomotion to stereotypic movements.  相似文献   

19.
Reserpine (1 mg/kg, i.p.) induced catalepsy and blepharoptosis in mice which were readily reversed by the administration of L-dopa (300 mg/kg, i.p.). The administration of the pure narcotic antagonists naloxone (10 mg/kg, i.p.) and naltrexone (1 mg/kg, i.p.) significantly potentiated L-dopa reversal of reserpine-induced catalepsy. Lower doses of the narcotic antagonists did not significantly alter this reversal. The L-dopa reversal of blepharoptosis was not significantly altered by either naloxone or naltrexone. These results indicate that while opiate receptors may be involved in L-dopa reversal of catalepsy, they may not have a role in the alteration of blepharoptosis.  相似文献   

20.
Role of adrenals in morphine-induced hyperthermia was studied in normal, neurotransmitter antagonist-pretreated, chemical-sympathectomized, adrenalectomized or adrenal-demedullated rats. In restrained female rats, 5 mg/kg morphine produced hyperthermia whereas 20 mg/kg and 40 mg/kg produced hypothermia. Pretreatment with either phenoxybenzamine, propranolol, pentolinium or scopolamine inhibited the hyperthermia. After adrenalectomy, neither 5 mg/kg nor chronic administration of 20 mg/kg morphine produced previously demonstrated hyperthermia. After adrenal-demedullation, a dose of 5 mg/kg morphine also did not produce hyperthermia. In contrast to female rats, restrained male rats showed no significant effect on body temperature after 5 mg/kg morphine, requiring 20 mg/kg and 40 mg/kg morphine to produce hyperthermia. In adrenalectomized male rats, 20 mg/kg morphine did not produce the usual hyperthermia. The results suggest that male rats are more resistant to the hyperthermic effects of morphine than female rats and that in the rat, the adrenals, likely the medulla, play an important role in morphine-induced hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号