首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The uptake of minute virus of mice into cells in tissue culture was examined biochemically and by electron microscopy. Cell-virus complexes were formed at 4 degrees C, and uptake of virus was followed after the cells were shifted to 37 degrees C. The infectious particles appeared to enter cells at 37 degrees C by a two-step process. The first and rapid phase was measured by the resistance of cell-bound virus to elution by EDTA. The bulk of the bound virus particles became refractory to elution with EDTA within 30 min of incubation at 37 degrees C. The infectious particles became resistant to EDTA elution at the same rate. The second, slower phase of the uptake process was measured by the resistance of infectious particles to neutralization by antiserum. This process was complete within 2 h of incubation at 37 degrees C. During this 2-h period, labeled viral DNA became progressively associated with the nuclear fraction of disrupted cells. The uptake of infectious virus could occur during the G1 phase of the cell cycle and was not an S phase-specific event. The uptake process was not the cause of the S phase dependence of minute virus of mice replication. In electron micrographs, virus absorbed to any area of the cell surface appeared to be taken into the cell by pinocytosis.  相似文献   

2.
3.
4.
In mammalian cells, the activity of the sites of initiation of DNA replication appears to be influenced epigenetically, but this regulation is not fully understood. Most studies of DNA replication have focused on the activity of individual initiation sites, making it difficult to evaluate the impact of changes in initiation activity on the replication of entire genomic loci. Here, we used single molecule analysis of replicated DNA (SMARD) to study the latent duplication of Epstein-Barr virus (EBV) episomes in human cell lines. We found that initiation sites are present throughout the EBV genome and that their utilization is not conserved in different EBV strains. In addition, SMARD shows that modifications in the utilization of multiple initiation sites occur across large genomic regions (tens of kilobases in size). These observations indicate that individual initiation sites play a limited role in determining the replication dynamics of the EBV genome. Long-range mechanisms and the genomic context appear to play much more important roles, affecting the frequency of utilization and the order of activation of multiple initiation sites. Finally, these results confirm that initiation sites are extremely redundant elements of the EBV genome. We propose that these conclusions also apply to mammalian chromosomes.  相似文献   

5.
Previous work (E. A. Faust and D. C. Ward, J. Virol. 32:276-292, 1979) revealed a remarkably high rate of spontaneous deletion in viral DNA during lytic infection of cultured murine cells with minute virus of mice (MVM), an autonomous parvovirus. In the present study, we have isolated plasmid and phage recombinants containing MVM DNA inserts bearing deletions and we have determined the DNA sequence spanning three deletion junctions. The deletions, which average 3 kilobases in length, occur between pairs of perfectly homologous 4- to 10-base-pair direct repeats, such that one copy of the repeated sequence is lost, whereas the other remains behind at the deletion junction. When compared, the three sets of direct repeats exhibit no apparent sequence homology and have an A + T content of between 50 and 80%. These results indicate that 4- to 10-base-pair homologies mediate spontaneous deletion formation in the MVM genome and highlight parvoviruses as novel model systems for studies of this ubiquitous pathway of genetic variation.  相似文献   

6.
We identified a protein which is covalently linked to a fraction of the DNA synthesized in cells infected with minute virus of mice. This protein is specifically bound to the 5' terminus of the extended terminal conformers of the minute virus of mice replicative-form DNA species and of a variable fraction of single-stranded viral DNA. The chemical stability of the protein-DNA linkage is characteristic of a phosphodiester bond between a tyrosine residue in the protein and the 5' end of the DNA. The terminal protein (TP) bound on all DNA forms has a relative molecular weight of 60,000; it is also seen free in extracts from infected cells. Immunologic comparison of the TP with the other known viral proteins suggests that the TP is not related to the capsid proteins or NS-1.  相似文献   

7.
Minute virus of mice (MVM) nucleoprotein complexes were leached from infected cell nuclei in the presence of a hypotonic buffer. Detailed biochemical analyses performed on the extracted complexes revealed nucleoprotein complexes sedimenting together with virions at 110S and defective particles sedimenting at 50S. In contrast to the virions, the nucleoprotein complexes were found to be sensitive to treatment with DNase, Sarkosyl, and heparin. They were found to be composed of replicative forms of MVM DNA and cellular histones. After extensive micrococcal nuclease digestion performed on purified nucleoprotein complexes, a viral nucleosomes core containing a DNA segment of about 140 base pairs in length was identified. These complexes when visualized by electron microscopy revealed the existence of beaded structures (minichromosomes) having 26 and 52 beads per monomer and dimer molecules, respectively. We suggest that the organization of the intracellular viral DNA in a minichromosome structure is an essential step in the virus growth cycle.  相似文献   

8.
R Sahli  G K McMaster    B Hirt 《Nucleic acids research》1985,13(10):3617-3633
We have determined the complete nucleotide sequence of the DNA of the immunosuppressive variant of the parvovirus minute virus of mice (MVMi) and compared it to the published sequence (12) of the fibroblast-specific strain (MVMp). We have found 175 differences between the two viruses, most of which affect single nucleotides. Despite these differences, the genomic organization of MVMp and MVMi is identical. There are 29 amino-acid changes between the putative viral gene products of MVMi and MVMp, 16 of which are conservative. We discuss the possibility that the differential tissue-specificity of the two variants is linked to differences within the non-transcribed region near the 5' end of the viral genomes.  相似文献   

9.
Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells.  相似文献   

10.
We tested two strains of the minute virus of mice (MVM) for pathogenic effects and patterns of infection in laboratory mice. The two strains differ in their ability to infect differentiated cultured cells: the prototype virus, MVMp, infects only fibroblasts, while its variant, MVMi, is restricted to lymphocytes. We find that neither strain has any demonstrable effects on the T-cell function of mice infected as adults. In contrast, MVMi, but not MVMp, is able to induce a runting syndrome accompanied by mild immune deficiencies upon the infection of newborn mice. After neonatal infection, MVMi spreads to many organs, and the presence of viral replicative form DNA is evident in nucleic acid hybridization experiments. In contrast, replication of MVMp can be detected only by the seroconversion of infected animals. Newborn mice that grow abnormally as a result of MVMi infection also have low circulating antibody titers to the virus. This phenomenon may be a consequence of the lymphotropism of MVMi.  相似文献   

11.
T H Walton  P T Moen  Jr  E Fox    J W Bodnar 《Journal of virology》1989,63(9):3651-3660
Biochemical evidence is presented that both minute virus of mice (MVM) and adenovirus interact with the nucleolus during lytic growth and that MVM can also target specific changes involving nucleolar components in adenovirus-infected cells. These virus-nucleolus interactions were studied by analysis of intranuclear compartmentalization of both viral DNAs and host nucleolar proteins: (i) MVM in mouse cells (its normal host) replicates its DNA in the host nucleoli; (ii) specific nucleolar proteins as well as small nuclear ribonucleoprotein antigens are recompartmentalized to multiple intranuclear foci in adenovirus-infected HeLa cells; and (iii) when adenovirus helps MVM DNA replication in a nonpermissive human cell (HeLa), the MVM DNA is also recompartmentalized for synthesis. The data suggest mechanisms for disruption of nucleolar function common to oncogenic or oncolytic virus lytic growth and cell transformation.  相似文献   

12.

Background:

DNA immunization with plasmid DNA encoding bacterial, viral, parasitic, and tumor antigens has been reported to trigger protective immunity. The use of plasmid DNA vaccinations against many diseases has produced promising results in animal and human clinical trials; however, safety concerns about the use of DNA vaccines exist, such as the possibility of integration into the host genome, and elicitation of adverse immune responses.

Methods:

In this study, we examined the potential integration and bio-distribution of pcDNA3.1+PA, a new vaccine candidate with GenBank accession # EF550208, encoding the PA63 gene, in reproductive organs of mice; ovaries and uterus in female, and testis in male. Animals of both sexes were injected intramuscularly with pcDNA3.1+PA. Host genome integration and tissue distribution were examined using PCR and RT-PCR two times monthly for six months.

Results:

RT-PCR confirmed that pcDNA3.1+PA was not integrated into the host genome and did not enter reproductive organs.

Conclusions:

This finding has important implications for the use of pcDNA3.1+PA plasmid as a vaccine and opens new perspectives in the DNA vaccine area.Key Words: DNA, Intramuscular injection, Integration, Mice, Reproductive organs  相似文献   

13.
Stability of minute virus of mice against temperature and sodium hydroxide.   总被引:1,自引:0,他引:1  
Treatment with steam and/or dilute NaOH are commonly used techniques to disinfect manufacturing vessels and tools in the pharmaceutical industry. The aim of this procedure is sanitisation and inactivation of microbiological and viral contaminants. Here we describe the inactivation of the mouse parvovirus Minute Virus of Mice (MVM) under these conditions. Parvoviruses are known to be resistant to physico-chemical treatment and one representative of this family, the human parvovirus B19, is a potential contaminant of blood plasma. We show inactivation kinetics for MVM treated with wet-heat (70, 80, 90 degrees C) and with 0.01-1 M NaOH solutions (pH >/=11.9). Robust inactivation was only achieved at 90 degrees C for at least 10 min and in NaOH solutions of pH >/=12.8 (0.1 M NaOH). It was observed, that aggregation of viruses might protect viral particles from inactivation by NaOH. Therefore, appropriate sample preparation of spiking material is important for accurate simulation of the naturally occurring situation. The observed stability at pH 11.8 exceeds the previously reported upper limit of pH 9. Inactivation was due to disintegration of the viral capsid as assessed by accessibility of viral DNA for endonucleases.  相似文献   

14.
Mutations were introduced into plasmid pMM984, a full-length infectious clone of the fibrotropic strain of minute virus of mice, to identify cis-acting genetic elements required for the excision and replication of the viral genome. The replicative capacity of these mutants was measured directly, using an in vivo transient DNA replication assay following transfection of plasmids into murine A9 cells and primate COS-7 cells. Experiments with subgenomic constructs indicated that both viral termini must be present on the same DNA molecule for replication to occur and that the viral nonstructural protein NS-1 must be provided in trans. The necessary sequences were located within 1,084 and 807 nucleotides of the 3' and 5' ends of the minute virus of mice genome, respectively. The inhibitory effect of deletions within the 206-bp 5'-terminal palindrome demonstrated that these sequences comprise a cis-acting genetic element that is absolutely essential for the excision and replication of viral DNA. The results further indicated a requirement for a stem-plus-arms T structure as well as for the formation of a simple hairpin. In addition, the removal of one copy of a tandemly arranged 65-bp repeat found 94 nucleotides inboard of the 5'-terminal palindrome inhibited viral DNA replication in cis by 10- and just greater than 100-fold in A9 and COS-7 cells, respectively. The latter results define a novel genetic element within the 65-bp repeated sequence, distinct from the terminal palindrome, that is capable of regulating minute virus of mice DNA replication in a species-specific manner.  相似文献   

15.
Choi EY  Newman AE  Burger L  Pintel D 《Journal of virology》2005,79(19):12375-12381
Following transfection of murine fibroblasts, the lymphotropic strain of minute virus of mice (MVMi) does not efficiently produce progeny single-strand DNA (ssDNA). However, changing a single nucleotide in the MVMi 3' splice site to that found in the fibrotropic strain MVMp enabled full DNA replication and production of ssDNA. This change enhanced excision of the large intron and the production of NS2, likely by improving interaction, in fibroblasts with the branch point-binding U2 snRNA. One function of NS2 involves interaction with the nuclear export protein Crm1. The defect in production of MVMi ssDNA in fibroblasts can also be overcome by introducing a mutation in MVMi NS2 that enhances its interaction with Crm1. Although MVMi contains a 3' splice site that performs poorly in fibroblasts, MVMi generated at least as much R2 and NS2 in murine lymphocytes as did MVMp in fibroblasts. Therefore, it appears that MVMp has acquired a mutation that improves the excision of the large intron, as it adapted to fibroblasts to accommodate the need for NS2 for replication in these cells, and that the ratio of NS1 to NS2 may play a larger role in the host range of MVM than previously appreciated.  相似文献   

16.
17.
The molecular mechanisms responsible for random integration and gene targeting by recombinant adeno-associated virus (AAV) vectors are largely unknown, and whether vectors derived from autonomous parvoviruses transduce cells by similar pathways has not been investigated. In this report, we constructed vectors based on the autonomous parvovirus minute virus of mice (MVM) that were designed to introduce a neomycin resistance expression cassette (neo) into the X-linked human hypoxanthine phosphoribosyl transferase (HPRT) locus. High-titer, replication-incompetent MVM vector stocks were generated with a two-plasmid transfection system that preserved the wild-type characteristic of packaging only one DNA strand. Vectors with inserts in the forward or reverse orientations packaged noncoding or coding strands, respectively. In human HT-1080 cells, MVM vector random integration frequencies (neo(+) colonies) were comparable to those obtained with AAV vectors, and no difference was observed for noncoding and coding strands. HPRT gene-targeting frequencies (HPRT mutant colonies) were lower with MVM vectors, and the noncoding strand frequency was threefold greater than that of the coding strand. Random integration and gene-targeting events were confirmed by Southern blot analysis of G418- and 6-thioguanine (6TG)-resistant clones. In separate experiments, correction of an alkaline phosphatase (AP) gene by gene targeting was nine times more effective with a coding strand vector. The data suggest that single-stranded parvoviral vector genomes are substrates for gene targeting and possibly for random integration as well.  相似文献   

18.
19.
We have developed an in vitro system that supports the replication of natural DNA templates of the autonomous parvovirus minute virus of mice (MVM). MVM virion DNA, a single-stranded molecule bracketed by short, terminal, self-complementary sequences, is converted into double-stranded replicative-form (RF) DNA when incubated in mouse A9 fibroblast extract. The 3' end of the newly synthesized complementary strand is ligated to the right-end hairpin of the virion strand, resulting in the formation of a covalently closed RF (cRF) molecule as the major conversion product. cRF DNA is not further replicated in A9 cell extract alone. On addition of purified MVM nonstructural protein NS1 expressed from recombinant baculoviruses or vaccinia viruses, cRF DNA is processed into a right-end (5' end of the virion strand) extended form (5'eRF). This is indicative of NS1-dependent nicking of the right-end hairpin at a distinct position, followed by unfolding of the hairpin and copying of the terminal sequence. In contrast, no resolution of the left-end hairpin can be detected in the presence of NS1. In the course of the right-end nicking reaction, NS1 gets covalently attached to the right-end telomere of the DNA product, as shown by immunoprecipitation with NS1-specific antibodies. The 5'eRF product is the target for additional rounds of NS1-induced nicking and displacement synthesis at the right end, arguing against the requirement of the hairpin structure for recognition of the DNA substrate by NS1. Further processing of the 5'eRF template in vitro leads to the formation of dimeric RF (dRF) DNA in a left-to-left-end configuration, presumably as a result of copying of the whole molecule by displacement synthesis initiated at the right-end telomere. Formation of dRF DNA is highly stimulated by NS1. The experimental results presented in this report support various assumptions of current models of parvovirus DNA replication and provide new insights into the replication functions of the NS1 protein.  相似文献   

20.
We have characterized an immunosuppressive parvovirus related to the minute virus of mice (MVM). The parvovirus, MVM(i), grew efficiently on the murine lymphoma cell line EL-4 and not on the A-9 strain of L-cells which is a host for the prototype MVM. MVM(i) was immunosuppressive for allogeneic mixed leukocyte cultures, inhibiting the generation of cytolytic T lymphocytes. MVM had no effect on mixed leukocyte cultures. MVM and MVM(i) particles were similar in buoyant density, sedimentation rate, appearance in the electron microscope, and polypeptide composition. We present restriction enzyme maps of the DNAs of MVM and MVM(i) which show that they are closely related. Out of 109 restriction endonuclease cleavage sites (representing together about 10% of the nucleotide sequence), 86 sites were shared by MVM and MVM(i), whereas 22 sites were absent from one of the two viruses. MVM(i) DNA had an apparent deletion of about 60 nucleotides relative to MVM, located near the 5' terminus of viral DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号