首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
作物对太阳紫外线辐射增加的生物效应及其评估   总被引:43,自引:3,他引:43  
作物对太阳紫外线辐射增加的生物效应及其评估郑有飞,杨志敏,颜景义,万长建(南京气象学院,南京210044)Biologicalresponseofcropsonenhancedsolarultravioletradiationanditsestima...  相似文献   

2.
The aim of this study was to investigate physiological interactions between fabric and the human body via skin and the resultant disturbance to blood flow, which in turn influences the skin temperature and the sensation of warmth and chilliness, thus the feeling of comfort. We focussed on the effects on the forearm skin blood flow by different local physical stimuli from fabrics. The blood flows were examined under three protocols: (1) using fabrics of different fiber types and fiber blending, (2) different surface characteristics of the same fabric and fiber type, and (3) different moisture levels of the same fabric type. A total of five different fabrics were wrapped over the forearm of a female subject at a good health state for test. The fabric samples were preconditioned for 24 h, and the subject sat for 30 min, in both cold and dry ambient conditions (20.5±0.5 °C, 45±5 p.100 RH) to reach equilibrium before testing. The forearm skin blood flow and temperature were recorded by a laser-Doppler flowmeter (DP1T/7-V2) with two probes mounted on both forearms to eliminate any systematic common mode fluctuations. Several conclusions were drawn from our test data. First, the fabric impact on both skin temperature and blood flow can be significant. Also fabric surface characteristics play important role, especially during the transient heat exchange at the beginning of contact. Finally, moisture level in the samples exhibits considerable influences on skin temperature and blood flow, and the higher the moisture level, the longer the duration of the impact.  相似文献   

3.
Eight healthy subjects exercised at 90 watts on a cycle ergometer on four occasions, at times close to the minimum, maximum rate of rise, maximum, and maximum rate of fall of their resting core temperature. The duration of exercise was determined by the time taken for the core (rectal) temperature to reach an equilibrium value. Forearm skin blood flow and temperature were measured regularly during the exercise, as were heart rate and ratings of perceived exertion. Sweat loss was calculated by weighing the subjects nude before and after the exercise. The rise of heart rate was not significantly different at the four times of exercise, though the rating of perceived exertion was greatest at 05:00 h. Resting core temperatures showed a significant circadian rhythm at rest (the timing of which confirmed that exercise was being performed at the required times), but the amplitude of this rhythm was decreased significantly by the exercise. The initial rate of rise of core temperature, and the total rise from the resting to the equilibrium value, were both inversely proportional to resting temperature. The time-course of the rise was accurately described by a negative-exponential model, but this model gave no evidence that the kinetics of the equilibration process depended upon the time of day. The thermoregulatory responses to the rise in core temperature—the amount of total sweat loss and rises in forearm skin blood flow and temperature—differed according to the time of exercise. In general, the responses were significantly greater at 17:00 h compared with 05:00 h, and at 23:00 h compared with 11:00 h. The results accord with predictions made on the basis of previous work by us in which core temperature rhythms have been separated into components due to the endogenous body clock and due to the direct effects of spontaneous activity. The results are discussed in terms of the ecological implications of the differing capabilities of humans to deal with heat loads produced by spontaneous activity or mild exercise at different phases of the circadian rhythm of resting core temperature.  相似文献   

4.
The minute-range up and down rhythms of the lateral leaflets of Desmodium gyrans has been studied when exposed to electromagnetic radiation in the radio-frequency (RF) range. The RF radiation was applied as homogeneous 27.12 MHz fields in specially-designed exposure cells(and in some cases as non-homogeneous radiation of 27 MHz. amplitude modulated by 50 Hz, in front of commercial diathermy equipment). All fields were applied as pulses. We report effects in the leaflet rhythms such as temporary changes in the amplitude, period, and phase. The radiation could also cause temporary or complete cessations of the rhythms. The lowest dose (8 W/cm2) used was still effective. © 1993 Wiley-Liss. Inc.  相似文献   

5.
Extremely brilliant infrared (IR) beams provided by synchrotron radiation sources are now routinely used in many facilities with available commercial spectrometers coupled to IR microscopes. Using these intense non-thermal sources, a brilliance two or three order of magnitude higher than a conventional source is achievable through small pinholes (< 10 μm) with a high signal to-noise ratio. IR spectroscopy is a powerful technique to investigate biological systems and offers many new imaging opportunities. The field of infrared biological imaging covers a wide range of fundamental issues and applied researches such as cell imaging or tissue imaging. Molecular maps with a spatial resolution down to the diffraction limit may be now obtained with a synchrotron radiation IR source also on thick samples. Moreover, changes of the protein structure are detectable in an IR spectrum and cellular molecular markers can be identified and used to recognize a pathological status of a tissue. Molecular structure and functions are strongly correlated and this aspect is particularly relevant for imaging. We will show that the brilliance of synchrotron radiation IR sources may enhance the sensitivity of a molecular signal obtained from small biosamples, e.g., a single cell, containing extremely small amounts of organic matter. We will also show that SR IR sources allow to study chemical composition and to identify the distribution of organic molecules in cells at submicron resolution is possible with a high signal-to-noise ratio. Moreover, the recent availability of two-dimensional IR detectors promises to push forward imaging capabilities in the time domain. Indeed, with a high current synchrotron radiation facility and a Focal Plane Array the chemical imaging of individual cells can be obtained in a few minutes. Within this framework important results are expected in the next years using synchrotron radiation and Free Electron Laser (FEL) sources for spectro-microscopy and spectral-imaging, alone or in combination with Scanning Near-field Optical Microscopy methods to study the molecular composition and dynamic changes in samples of biomedical interest at micrometric and submicrometric scales, respectively.  相似文献   

6.
The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.  相似文献   

7.
《Epigenetics》2013,8(8):892-902
The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.  相似文献   

8.
We review the general amount and patterns of exposure to solar ultraviolet (UV) radiation that children and teenagers experience and the spectrum of UV-related skin damage that can occur as a result. Data about the amount of solar UV received by children and teenagers are relatively few but suggest that around 40–50% of total UV to age 60 occurs before age 20. Among white children, those with the palest complexions suffer the most damage. Comparisons of prevalence and incidence of outcomes in children and teenagers sharing common ancestry, but living at different latitudes, show that prevalence rates of photoaging and melanocytic naevi are higher in Australian compared with British children, and similarly for melanoma. Genetic risk for the majority of the melanomas in teens is a function of genes controlling naevus propensity and pigmentation in the skin. High numbers of naevi and freckles, red hair, blue eyes, inability to tan, as well as a family history are the primary determinants of melanoma among adolescents. Beyond the signs of skin damage seen in children are the latent effects observed later in adulthood. Childhood is believed to be a susceptible window for long-term harmful effects of UV, as evidenced by clear differences in skin cancer risk between child and adult migrants from high to low latitudes. Effective UV radiation protection from childhood is necessary to control both immediate and long-term harmful effects on children’s skin.  相似文献   

9.
    
Low intensity resistance training with slow movement and tonic force generation has been shown to create blood flow restriction within muscles that may affect thermoregulation through the skin. We aimed to investigate the influence of two speeds of exercise execution on skin temperature dynamics using infrared thermography. Thirteen active males performed randomly two sessions of squat exercise (normal speed, 1 s eccentric/1 s concentric phase, 1 s; slow speed, 5 s eccentric/5 s concentric phase, 5 s), using ~50% of 1 maximal repetition. Thermal images of ST above muscles quadriceps were recorded at a rate of 0.05 Hz before the exercise (to determine basal ST) and for 480 s following the initiation of the exercise (to determine the nonsteady-state time course of ST). Results showed that ST changed more slowly during the 5 s exercise (p=0.002), whereas the delta (with respect to basal) excursions were similar for the two exercises (p>0.05). In summary, our data provided a detailed nonsteady-state portrait of ST changes following squat exercises executed at two different speeds. These results lay the basis for further investigations entailing the joint use of infrared thermography and Doppler flowmetry to study the events taking place both at the skin and the muscle level during exercises executed at slow speed.  相似文献   

10.
The giant sporangiophores of Phycomyces blakesleeanus turn towards blue and away from ultraviolet C sources (wavelength under 310 nm). We have isolated fifteen mutants with normal blue tropism but defective ultraviolet tropism. Wild-type sporangiophores described a double turn when exposed successively to blue and ultraviolet beams coming from the same side; under certain conditions, the mutants turned only to the blue. The new uvi mutations modified the behaviour in heterokaryosis and were lethal in homokaryosis, i.e., they affected essential cellular components. The responses of the wild type and one of the mutants were registered and evaluated with a computer-aided device. The mutant behaved normally under blue light, but took longer than the wild type to turn away from the ultraviolet source. With very weak ultraviolet stimuli (10(-8) and l0(-9) W m-2), the wild type turned towards the source, but the mutant did not respond. Calculations of absorbed-energy distributions in the sporangiophore showed that Phycomyces responds differently to similar spatial distributions of blue and ultraviolet radiations. Wild-type and mutant sporangiophores had the same high ultraviolet absorption due to gallic acid. We conclude that ultraviolet tropism is not just a modification of blue phototropism due to the high ultraviolet absorption of the sporangiophores. Phycomyces has a separate sensory system responsive to ultraviolet radiation, but not to blue light.  相似文献   

11.
    
In this experiment, hand and forearm vasomotor activity was investigated during localised, but stable heating and cooling of the face, hand and thigh, under open-loop (clamped) conditions. It was hypothesised that facial stimulation would provoke the most potent vascular changes. Nine individuals participated in two normothermic trials (mean body temperature clamp: 36.6 °C; water-perfused suit and climate chamber) and two mildly hyperthermic trials (37.9 °C). Localised heating (+5 °C) and cooling (−5 °C) stimuli were applied to equal surface areas of the face, hand and thigh (perfusion patches: 15 min), while contralateral forearm or hand blood flows (venous-occlusion plethysmography) were measured (separate trials). Thermal sensation and discomfort votes were recorded before and during each thermal stimulation. When hyperthermic, local heating induced more sensitive vascular responses, with the combined thermosensitivity of both limb segments averaging 0.011 mL·100 mL−1·min−1·mmHg−1·°C−1, and 0.005 mL·100 mL−1·min−1·mmHg−1·°C−1 during localised cooling (P<0.05). Inter-site comparisons among the stimulated sites yielded minimal evidence of variations in local thermal sensation, and no differences were observed for vascular conductance (P>0.05). Therefore, regional differences in vasomotor and sensory sensitivity appeared not to exist. When combined with previous observations of sudomotor sensitivity, it seems that, during mild heating and cooling, regional representations within the somatosensory cortex may not translate into meaningful differences in thermal sensation or the central integration of thermoafferent signals. It was concluded that inter-site variations in the cutaneous thermosensitivity of these thermolytic effectors have minimal physiological significance over the ranges investigated thus far.  相似文献   

12.
The feasibility of performing X-ray fluorescence trace-element determinations at concentrations substantially below the ppm level for biological materials is demonstrated. Conditions for achieving optimum sensitivity were ascertained. Results achieved for five standard reference materials were, in most cases, in excellent agreement with listed values. Minimum detectable limits of 20 ppb were measured for most elements.  相似文献   

13.
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study [D'Andrea et al., 1985] reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2,450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.  相似文献   

14.
Adverse effects of ultraviolet radiation: a brief review   总被引:1,自引:0,他引:1  
Solar ultraviolet radiation (UVR) has always been part of the environment of man. UVB is required for the conversion of 7-deoxycholesterol to vitamin D, which is critically important in the maintenance of healthy bones and research is making clear that it has other potential roles in maintenance of human health. Exposure to UVR, whether of solar or artificial origin, also carries potential risks to human health. UVR is a known carcinogen and excessive exposure-at least to solar radiation in sunlight-increases risk of cancer of the lip, basal cell, and squamous cell carcinoma of the skin and cutaneous melanoma, particularly in fair skin populations. There is also evidence that solar UVR increases risk of several diseases of the eye, including cortical cataract, some conjunctival neoplasms, and perhaps ocular melanoma. Solar UVR may also be involved in autoimmune and viral diseases although more research is needed in these areas. Artificial UVR from tanning beds, welding torches, and other sources, may contribute to the burden of disease from UVR. This brief review will assess the human evidence for adverse health effects from solar and artificial UVR and will attempt to assign a degree of certainty to the major disease-exposure relationships based on the weight of available scientific evidence.  相似文献   

15.
The major well-proven long-term health risks of excessive exposure to ultraviolet (UV) radiation relate to the skin. Premalignant skin lesions are seen very much earlier in white skinned populations exposed to excessive sunlight, and over time these same individuals develop larger numbers of all of the three major skin cancers than individuals who do not experience excessive UV exposure. These three skin cancers are squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and malignant melanoma. In the case of SCC the major aetiological pattern is chronic long-term exposure, but for BCCs the pattern appears to be slightly different with short-term burning episodes being more important. In the case of melanomas, there is evidence that for the 4 main types of melanomas, the pattern of excess UV exposure which is most injurious varies.  相似文献   

16.
17.
Stephanou  M.  Manetas  Y. 《Plant Ecology》1997,128(1-2):109-112
Young seedlings of Dittrichia viscosa L. (syn. Inula viscosa (L.) Aiton) (Asteraceae) were extensively treated with artificial rain in order to remove the water soluble component of their epicuticular UV-B absorbing compounds. As a result, 75% of the epicuticular absorbing capacity at 300 nm was lost. The seedlings were subsequently grown in a naturaly lit glasshouse for 80 days under 0.06, 6.41 and 10.14 kJ m-2 day -1 biologicaly effective UV-B radiation doses. The initial, pre-rain values of the water soluble, epicuticular UV-B absorbing potential was restored in about three weeks. During this transient period the plants were exposed to the enhanced UV-B radiation doses with part of their UV-B radiation screen removed. Although a trend for increased accumulation of epicuticular UV-B absorbing capacity was observed with increasing UV-B radiation doses, the allelopathic potential of the epicuticular material remained unchanged. Internal (cellular) UV-B absorbing compounds and chlorophylls were unaffected, but total carotenoids were increased, indicating a possible protective role against UV-B radiation damage. Leaf, stem and root dry mass were the same under all treatments but UV-B radiation caused a reduction in the dry mass invested per unit leaf area with a concomitant increase in leaf area. The importance of this UV-B radiation induced selective allocation of photosynthate to the production of assimilative surfaces is discussed.  相似文献   

18.
The Spontaneously Hypertensive rat (SHR) and its non-hypertensive companion strain, the Wistar-Kyoto (WKY) rat, provide an excellent comparative model to permit study of the differential properties of cutaneous microvascular beds. We explored the possibility that chronically elevated vascular pressures in the SHR rat might affect the microvascular constitution of the skin. We measured skin blood flow at the back and at the paw of a group of 20-week-old WKY rats and a contrast group of SHR rats. We then performed skin biopsies at these two locations and used the NIH Image program to count and measure the size of capillaries, arterioles, and venules. We also determined microvascular density as percentage of total tissue area. At basal temperature, skin blood flow was similar in the two rat strains at both the back and paw. Heat induced vasodilatation resulted in a 50% increase in blood flow at the back, reaching the same level in the two rat groups. However, at the paw site, thermal stimulation resulted in significantly greater flow (39.3 +/- 3.1 ml/100 gm tissue per min) in the SHR rats than the WKY rats (28.6 +/- 1.9 ml/100 gm tissue per min, P < 0.05). The ratio of systemic arterial pressure to skin blood flow was computed as an index of vascular resistance to flow. At basal temperature, this index was 50% greater for the SHR rats at both skin sites. At 44 degrees C, the resistance index decreased at both sites in both rat groups but was still approximately 50% higher at the back of the SHR than the WKY rats. In contrast, the resistance index at 44 degrees C at the paw site fell to the same level in both the SHR and WKY rats. There were twice as many capillaries at the back of the WKY rats than at the back of the SHR rats (9.2 +/- 2.0 per mm2 vs. 4.7 +/- 1.2 per mm2, P < 0.05). Expressed as a percentage of total tissue area, the capillary density at the back in the WKY rats was 0.064 +/- 0.010% as compared to 0.034 +/- 0.008% in the SHR rats (P < 0.05). There were five times more arterioles at the paw compared to the back in both rat groups with no significant difference between the groups. We measured the diameter of the lumen and the thickness of the wall of each arteriole and computed their ratio as an index of possible media hypertrophy. There were minimal differences seen in these parameters between the two rat groups at the back and paw sites. The venular density was significantly higher at the paw than at the back in both rat groups with no significant difference between them. Reduced capillary density at the back of the SHR rats may be a developmental adaptation to high blood pressure. Such a reduction in the pathways of blood flow may help account for increased flow resistance at that site, independent of arteriolar vasoconstriction.  相似文献   

19.
Two strains of Biomphalaria glabrata were studied with respect to the effects of ionizing radiation on their susceptibility to Schistosoma mansoni infection. Gamma radiation at levels of 3.5 and 5 krad did not induce susceptibility in the resistant S-3 strain, but was found to initiate resistance in the susceptible PR-1 strain. In an attempt to understand the induced resistance in irradiated snails, histopathologic examinations and analyses of snail hemolymph were performed. Results indicated that miracidia invading irradiated snails were quickly surrounded and encapsulated by amoebocytes. Similarly, alterations in the hemolymph of irradiated snails suggested that radiation induced aging. It is suggested that radiation-altered snails may be of value in studying the defense mechanisms of these organisms.  相似文献   

20.
UV-B辐射增强对水稻生长发育及其产量形成的影响   总被引:31,自引:2,他引:31  
在盆载条件下,研究UV-B辐射(280-320nm)增强对3个不同类型水稻品种(组合)的生长发育及其产量构成的影响。结果表明,UV-B辐射增强明显抑制水稻生长,使株高变矮、分蘖数减少、叶面积和干物质量下降,但其抑制程度依品种、水稻所处的生长阶段的不同而不同;株高在苗期下降幅度最大,为9.4%-12.2%,干物质量在分蘖期下降幅度最大,地下部和地上部干物质量分别下降45.3%-59.8%、54.9%-59.0%,增强的UV-B辐射使水稻主茎不同叶位的出叶时间延迟,生育期延长,汕优63、南川、IR65600-85的抽穗时间分别比对照延迟2d、3d和7d,成熟期分别推迟3d、4d和9d,UV-B辐射增强明显降低水稻叶片的叶绿素和类胡萝卜素含量,叶片叶绿素a荧光诱导动力学参数Fv、Fv/Fm、Fv/Fo下降,与对照相比,汕优6.3、南川、IR65600-85叶片的净光合速率分别下降了11.9%、12.8%、29.7%,UV-B辐射增强使水稻每株有效穗、每穗总粒数、结实率、千粒重下降,最终导致水稻籽粒产量下降25.2%-31.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号