首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vector competence for La Crosse virus (LACV) was compared for four species in the Aedes (Protomacleaya) triseriatus group: Ae. triseriatus (Say), Ae. hendersoni Cockerell, Ae. zoosophus Dyar and Knab and Ae. brelandi Zavortink (Diptera: Culicidae). Rates of replication and dissemination of virus in the mosquito hosts were compared and rates of oral transmission of virus to suckling mice were determined. Barriers to virus dissemination which limited the ability of each species to transmit virus were identified. Ae. zoosophus displayed the highest vector competence for LACV. Both infection and transmission rates were high: 99% and 85% respectively; no significant barriers to LACV were found. Disseminated infection of Ae. triseriatus with LACV was controlled primarily be a midgut escape barrier. When virus was introduced directly into the haemocoel, transmission rates were significantly increased (37% v. 79%). Ae. hendersoni showed high susceptibility to LACV infection but a very low rate of oral transmission (7%). Ae. brelandi was also highly susceptible to infection by LACV and transmitted virus at an intermediate rate (27%). Modulation of vector competence in both Ae. hendersoni and Ae. brelandi resulted from a salivary gland escape barrier. As these four species of mosquitoes comprise a closely related monophyletic series, their differences of vector competence for LACV provide an excellent model for studying the genetic basis of the barriers involved.  相似文献   

2.
3.

Background

Zika virus (ZIKV) is a little known arbovirus until it caused a major outbreak in the Pacific Island of Yap in 2007. Although the virus has a wide geographic distribution, most of the known vectors are sylvatic Aedes mosquitoes from Africa where the virus was first isolated. Presently, Ae. aegypti is the only known vector to transmit the virus outside the African continent, though Ae. albopictus has long been a suspected vector. Currently, Ae. albopictus has been shown capable of transmitting more than 20 arboviruses and its notoriety as an important vector came to light during the recent chikungunya pandemic. The vulnerability of Singapore to emerging infectious arboviruses has stimulated our interest to determine the competence of local Ae. albopictus to transmit ZIKV.

Methodology/Principal Findings

To determine the competence of Ae. albopictus to ZIKV, we orally infected local mosquito strains to a Ugandan strain virus. Fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 80–85%RH. Twelve mosquitoes were then sampled daily from day one to seven and on day 10 and 14 post infection (pi). Zika virus titre in the midgut and salivary glands of each mosquito were determined using tissue culture infectious dose50 assay, while transmissibility of the virus was determined by detecting viral antigen in the mosquito saliva by qRT-PCR. High dissemination and transmission rate of ZIKV were observed. By day 7-pi, all mosquitoes have disseminated infection and 73% of these mosquitoes have ZIKV in their saliva. By day 10-pi, all mosquitoes were potentially infectious.

Conclusions/Significance

The study highlighted the potential of Ae. albopictus to transmit ZIKV and the possibility that the virus could be established locally. Nonetheless, the threat of ZIKV can be mitigated by existing dengue and chikungunya control program being implemented in Singapore.  相似文献   

4.
Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23) and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.  相似文献   

5.
The recent recognition of established populations of the mosquito, Culex gelidus Theobald, in Australia has raised concerns about local transmission of arboviruses. The vector competence of a mainland population of Cx. gelidus was investigated for two local alphaviruses, Ross River (RRV) and Barmah Forest (BFV) viruses, and three flaviviruses, Japanese encephalitis (JEV), Kunjin (KUNV) and Murray Valley encephalitis (MVEV) viruses. Colonised mosquitoes were exposed to virus via blood-soaked pledgets and transmission was tested using a capillary-tube method. The important Australian vectors, Aedes vigilax (Skuse) and Culex annulirostris Skuse, were used as internal controls for the alphaviruses and flaviviruses, respectively. Overall, Cx. gelidus was a more efficient vector of flaviviruses than alphaviruses. Culex gelidus was refractory to infection with BFV, and nearly 25% transmitted RRV, which was comparable to Ae. vigilax . Culex gelidus was susceptible to all three flaviviruses, with transmission rates of 96%, 95% and 41% for JEV, KUNV and MVEV, respectively. JEV transmission rates in Cx. annulirostris were unexpectedly low and this was possibly due to differences in susceptibility to JEV genotypes I and II. Considering the high susceptibility to the flaviviruses demonstrated here, and the natural infections with RRV and JEV that have been detected from northern Australian populations, the establishment of the exotic mosquito, Cx. gelidus , in Australia is potentially a significant public health concern.  相似文献   

6.
Abstract Coquillettidia linealis is a severe pest on some of the Moreton Bay islands in Queensland, Australia, but little is known of its breeding habitats and biology. Because of its high abundance and its association with Ross River (RR) and Barmah Forest (BF) viruses by field isolation, its vector competence was evaluated in the laboratory by feeding dilutions of both viruses in blood. For RR, Cq. linealis was of comparable efficiency to Ochlerotatus vigilax (Skuse), recognised as being a major vector. Results were as follows for Cq. linealis and Oc. vigilax , respectively: dose to infect 50%, 102.2 and <101.7 CCID50/mosquito; 88% and 90% disseminated infection at 4 days postinfection; transmission at 4 days with rates of 68−92% and 25−60%. For BF dose to infect 50%, 102.7 and 102.0; disseminated infection rates on first transmission day (day 6), 40% and 70%; transmission rates of 8−16% and 0−10%. As a capillary-tube method was used rather than suckling mice to demonstrate transmission, transmission rates may be underestimates. This, the first study of the vector competence of Cq. linealis in Australia, demonstrates that this species deserves control on the southern Moreton Bay islands.  相似文献   

7.
Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects.  相似文献   

8.
Population genetics of the mosquito Aedes vigilax (Skuse) (Diptera: Culicidae), a major vector of arboviruses (e.g. Barmah Forest, Ross River), were investigated to obtain an indirect estimate of mosquito dispersal characteristics in typical habitats of Aedes vigilax in south-east Queensland: on the off-shore islands of Moreton Bay and on the mainland where disjunct breeding populations of Ae. vigilax are distributed along intertidal marsh. Six allozyme loci were assessed for genetic differentiation between samples from 11 localities. Significant larval variation between some breeding sites was attributed to site-specific selection. Nonsignificant genetic differentiation was found among collections of adult mosquitoes caught in light traps throughout the study area (exceeding 60x27 km), indicating widespread dispersal. As distances of < or = 9 km over water did not appear to act as effective barriers to Ae. vigilax dispersal, localized control activities applied to Ae. vigilax breeding sites are unlikely to be effective against the vagile adult population. Therefore, the contiguous shires programme of broad acre control is endorsed to prevent the spread of arboviruses carried by Ae. vigilax  相似文献   

9.
The Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae), native to Southeast Asia, has extended its geographical distribution to invade new temperate and tropical regions. This species was introduced in 1990 to Italy and has since become the main pest in urban settings. It was incriminated as a principal vector in the first European outbreak of chikungunya virus (CHIKV) in the province of Ravenna (Italy) in 2007. This outbreak was associated with CHIKV E1-226V, efficiently transmitted by Ae. albopictus . The occurrence of this outbreak in a temperate country led us to estimate the potential of Ae. albopictus to transmit CHIKV and dengue virus (DENV), and to determine the susceptibility to CHIKV of other mosquito species collected in northern Italy. Experimental infections showed that Ae. albopictus exhibited high disseminated infection rates for CHIKV (75.0% in Alessandria; 90.3% in San Lazzaro) and low disseminated infection rates for DENV-2 (14.3% in San Lazzaro; 38.5% in Alessandria). Moreover, Ae. albopictus was able to attain a high level of viral replication, with CHIKV detectable in the salivary glands at day 2 after infection. In addition, the other three mosquito species, Anopheles maculipennis Meigen, Aedes vexans vexans (Meigen) and Culex pipiens L., showed variable susceptibilities to infection with CHIKV, of 0%, 7.7% and 0–33%, respectively. This information on vector competence is crucial in assessing the risk for an outbreak of CHIKV or DENV in Italy.  相似文献   

10.

Background

Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes.

Methods

To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution.

Results

Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus.

Conclusions

This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs.  相似文献   

11.

Background  

Vector competence refers to the intrinsic permissiveness of an arthropod vector for infection, replication and transmission of a virus. Notwithstanding studies of Quantitative Trait Loci (QTL) that influence the ability of Aedes aegypti midgut (MG) to become infected with dengue virus (DENV), no study to date has been undertaken to identify genetic markers of vector competence. Furthermore, it is known that mosquito populations differ greatly in their susceptibility to flaviviruses. Differences in vector competence may, at least in part, be due to the presence of specific midgut epithelial receptors and their identification would be a significant step forward in understanding the interaction of the virus with the mosquito. The first interaction of DENV with the insect is through proteins in the apical membrane of the midgut epithelium resulting in binding and receptor-mediated endocytosis of the virus, and this determines cell permissiveness to infection. The susceptibility of mosquitoes to infection may therefore depend on their specific virus receptors. To study this interaction in Ae. aegypti strains that differ in their vector competence for DENV, we investigated the DS3 strain (susceptible to DENV), the IBO-11 strain (refractory to infection) and the membrane escape barrier strain, DMEB, which is infected exclusively in the midgut epithelial cells.  相似文献   

12.
致倦库蚊对登革Ⅱ型病毒的中肠感染屏障作用   总被引:2,自引:0,他引:2  
为探讨致倦库蚊对登革Ⅱ型病毒的中肠感染屏障作用,通过病毒分离、逆转录聚合酶链反应、透射电镜等技术进行了相关研究。结果表明:吸食感染性血液后,登革Ⅱ型病毒能侵染白纹伊蚊中肠上皮细胞并大量复制,但不能侵染致倦库蚊中肠上皮细胞。以上研究证明致倦库蚊对登革Ⅱ型病毒存在中肠感染屏障。  相似文献   

13.

Background

Aedes aegypti is the main mosquito vector of the four serotypes of dengue virus (DENV). Previous population genetic and vector competence studies have demonstrated substantial genetic structure and major differences in the ability to transmit dengue viruses in Ae. aegypti populations in Mexico.

Methodology/Principal Findings

Population genetic studies revealed that the intersection of the Neovolcanic axis (NVA) with the Gulf of Mexico coast in the state of Veracruz acts as a discrete barrier to gene flow among Ae. aegypti populations north and south of the NVA. The mosquito populations north and south of the NVA also differed in their vector competence (VC) for dengue serotype 2 virus (DENV2). The average VC rate for Ae. aegypti mosquitoes from populations from north of the NVA was 0.55; in contrast the average VC rate for mosquitoes from populations from south of the NVA was 0.20. Most of this variation was attributable to a midgut infection and escape barriers. In Ae. aegypti north of the NVA 21.5% failed to develop midgut infections and 30.3% of those with an infected midgut failed to develop a disseminated infection. In contrast, south of the NVA 45.2% failed to develop midgut infections and 62.8% of those with an infected midgut failed to develop a disseminated infection.

Conclusions

Barriers to gene flow in vector populations may also impact the frequency of genes that condition continuous and epidemiologically relevant traits such as vector competence. Further studies are warranted to determine why the NVA is a barrier to gene flow and to determine whether the differences in vector competence seen north and south of the NVA are stable and epidemiologically significant.  相似文献   

14.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

15.
Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections.  相似文献   

16.
A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV) infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi), is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA), which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs). These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2) infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.  相似文献   

17.
In Puerto Rico, the first records of the transmission of Chikungunya (CHIKV) and Zika (ZIKV) viruses were confirmed in May 2014 and December 2015, respectively. Transmission of CHIKV peaked in September 2014, whereas that of ZIKV peaked in August 2016. The emergence of these mosquito‐transmitted arboviruses in the context of a lack of human population immunity allowed observations of whether the outbreaks were associated with Aedes aegypti (Diptera: Culicidae) densities and weather. Mosquito density was monitored weekly in four communities using sentinel autocidal gravid ovitraps (AGO traps) during 2016 in order to provide data to be compared with the findings of a previous study carried out during the 2014 CHIKV epidemic. Findings in two communities protected against Ae. aegypti using mass AGO trapping (three traps per house in most houses) were compared with those in two nearby communities without vector control. Mosquito pools were collected to detect viral RNA of ZIKV, CHIKV and dengue virus. In areas without vector control, mosquito densities and rates of ZIKV detection in 2016 were significantly higher, similarly to those observed for CHIKV in 2014. The density of Ae. aegypti in treated sites was less than two females/trap/week, which is similar to the putative adult female threshold for CHIKV transmission. No significant differences in mosquito density or infection rates with ZIKV and CHIKV at the same sites between years were observed. Although 2016 was significantly wetter, mosquito densities were similar.  相似文献   

18.
Chikungunya virus (CHIKV) is an emerging arbovirus associated with several recent large-scale epidemics. The 2005-2006 epidemic on Reunion island that resulted in approximately 266,000 human cases was associated with a strain of CHIKV with a mutation in the envelope protein gene (E1-A226V). To test the hypothesis that this mutation in the epidemic CHIKV (strain LR2006 OPY1) might influence fitness for different vector species, viral infectivity, dissemination, and transmission of CHIKV were compared in Aedes albopictus, the species implicated in the epidemic, and the recognized vector Ae. aegypti. Using viral infectious clones of the Reunion strain and a West African strain of CHIKV, into which either the E1-226 A or V mutation was engineered, we demonstrated that the E1-A226V mutation was directly responsible for a significant increase in CHIKV infectivity for Ae. albopictus, and led to more efficient viral dissemination into mosquito secondary organs and transmission to suckling mice. This mutation caused a marginal decrease in CHIKV Ae. aegypti midgut infectivity, had no effect on viral dissemination, and was associated with a slight increase in transmission by Ae. aegypti to suckling mice in competition experiments. The effect of the E1-A226V mutation on cholesterol dependence of CHIKV was also analyzed, revealing an association between cholesterol dependence and increased fitness of CHIKV in Ae. albopictus. Our observation that a single amino acid substitution can influence vector specificity provides a plausible explanation of how this mutant virus caused an epidemic in a region lacking the typical vector. This has important implications with respect to how viruses may establish a transmission cycle when introduced into a new area. Due to the widespread distribution of Ae. albopictus, this mutation increases the potential for CHIKV to permanently extend its range into Europe and the Americas.  相似文献   

19.
Dengue virus (DENV) is a flavivirus that causes marked human morbidity and mortality worldwide, and is transmitted to humans by Aedes aegypti mosquitoes. Habitat expansion of Aedes, mainly due to climate change and increasing overlap between urban and wild habitats, places nearly half of the world’s population at risk for DENV infection. After a bloodmeal from a DENV-infected host, the virus enters the mosquito midgut. Next, the virus migrates to, and replicates in, other tissues, like salivary glands. Successful viral transmission occurs when the infected mosquito takes another blood meal on a susceptible host and DENV is released from the salivary gland via saliva into the skin. During viral dissemination in the mosquito and transmission to a new mammalian host, DENV interacts with a variety of vector proteins, which are uniquely important during each phase of the viral cycle. Our study focuses on the interaction between DENV particles and protein components in the A. aegypti vector. We performed a mass spectrometry assay where we identified a set of A. aegypti salivary gland proteins which potentially interact with the DENV virion. Using dsRNA to silence gene expression, we analyzed the role of these proteins in viral infectivity. Two of these candidates, a synaptosomal-associated protein (AeSNAP) and a calcium transporter ATPase (ATPase) appear to play a role in viral replication both in vitro and in vivo, observing a ubiquitous expression of these proteins in the mosquito. These findings suggest that AeSNAP plays a protective role during DENV infection of mosquitoes and that ATPase protein is required for DENV during amplification within the vector.  相似文献   

20.

Background

The chikungunya (CHIK) outbreak that struck La Reunion Island in 2005 was preceded by few human cases of Dengue (DEN), but which surprisingly did not lead to an epidemic as might have been expected in a non-immune population. Both arboviral diseases are transmitted to humans by two main mosquito species, Aedes aegypti and Aedes albopictus. In the absence of the former, Ae. albopictus was the only species responsible for viral transmission on La Reunion Island. This mosquito is naturally super-infected with two Wolbachia strains, wAlbA and wAlbB. While Wolbachia does not affect replication of CHIK virus (CHIKV) in Ae. albopictus, a similar effect was not observed with DEN virus (DENV).

Methods/Principal Findings

To understand the weak vectorial status of Ae. albopictus towards DENV, we used experimental oral infections of mosquitoes from La Reunion Island to characterize the impact of Wolbachia on DENV infection. Viral loads and Wolbachia densities were measured by quantitative PCR in different organs of Ae. albopictus where DENV replication takes place after ingestion. We found that: (i) Wolbachia does not affect viral replication, (ii) Wolbachia restricts viral density in salivary glands, and (iii) Wolbachia limits transmission of DENV, as infectious viral particles were only detected in the saliva of Wolbachia-uninfected Ae. albopictus, 14 days after the infectious blood-meal.

Conclusions

We show that Wolbachia does not affect the replication of DENV in Ae. albopictus. However, Wolbachia is able to reduce viral infection of salivary glands and limit transmission, suggesting a role of Wolbachia in naturally restricting the transmission of DENV in Ae. albopictus from La Reunion Island. The extension of this conclusion to other Ae. albopictus populations should be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号