首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term cold exposure (5-7 days) is known to induce concomitant increases in the levels of adrenomedullary tyrosine hydroxylase (TH) RNA, protein, and enzyme activity. In this report, we compare the time courses of these changes and investigate the effects of cold exposure on the levels of biopterin, the cofactor required for tyrosine hydroxylation. After only 1 h of cold exposure, TH mRNA abundance increased 71% compared with nonstressed controls. Increases in total cellular TH RNA levels were maximal (threefold over control values) within 3-6 h of cold exposure and remained elevated throughout the duration of the experiment (72 h). TH protein levels increased rapidly after 24 h of cold exposure and reached a maximal value threefold above that of controls at 48-72 h. Despite the relatively rapid and large elevations in TH RNA and protein content, only modest increases in TH activity were detected during the initial 48 h of cold exposure. Adrenomedullary biopterin increased rapidly after the onset of cold exposure, rising to a level approximately twofold that of the nonstressed controls at 24 h, and remained at this level throughout the duration of the stress period. Taken together, the results of this time course study indicate that cold-induced alterations in adrenal TH activity are mediated by multiple cellular control mechanisms, which may include pre- and posttranslational regulation. Our findings also suggest that cold stress-induced increases in the levels of the TH cofactor may represent another key event in the sympathoadrenal system's response to cold stress.  相似文献   

2.
The activity (Vmax) of tyrosine hydroxylase (TH; EC 1.14.16.2), the rate limiting enzyme in the synthesis of catecholamines, is increased in carotid body, superior cervical ganglion, and the adrenal medulla during hypoxia (i.e., reduced PaO2). The present study was undertaken to determine if the increase in TH activity in these tissues during hypoxia is regulated at the level of TH mRNA. Adult rats were exposed to hypoxia (10% O2) or room air for periods lasting from 1 to 48 h. The carotid bodies, superior cervical ganglia, and adrenals were removed and processed for in situ hybridization using 35S-labeled oligonucleotide probes. The concentration of TH mRNA was increased by hypoxia at all time points in carotid body type I cells, but not in cells of either superior cervical ganglion or adrenal medulla. The increase in TH mRNA in carotid body during hypoxia did not require innervation of the carotid body or intact adrenal glands. In addition, hypercapnia, another physiological stimulus of carotid body activity, failed to induce an increase in TH mRNA in type I cells. Our findings suggest that hypoxia stimulates TH gene expression in the carotid body by a mechanism that is intrinsic to type I cells.  相似文献   

3.
Both dimethylphenylpiperazinium (DMPP), a nicotinic agonist, and bethanechol, a muscarinic agonist, increase 3,4-dihydroxyphenylalanine (DOPA) synthesis in the superior cervical ganglion of the rat. DMPP causes approximately a fivefold increase in DOPA accumulation in intact ganglia whereas bethanechol causes about a two-fold increase in DOPA accumulation. These effects are additive with each other and with the increase in DOPA accumulation produced by 8-bromo cyclic AMP. The action of DMPP is dependent on extracellular Ca2+ while the actions of bethanechol and 8-bromo cyclic AMP are not dependent on extracellular Ca2+. Cholinergic agonists and cyclic nucleotides produce a stable activation of tyrosine hydroxylase (TH) in the ganglion. The activation of TH by nicotinic and muscarinic agonists can be detected after 5 min of incubation of the ganglia with these agents. The nicotinic response disappears after 30 min of incubation, whereas the muscarinic response persists for at least 30 min. The Ca2+ dependence of the TH activation produced by these agents is similar to the Ca2+ dependence of their effects on DOPA accumulation in intact ganglia. These data are consistent with the hypothesis that nicotinic agonists, muscarinic agonists, and cyclic AMP analogues increase TH activity by three distinct mechanisms. The activation of TH presumably underlies the increase in DOPA synthesis produced by these agents.  相似文献   

4.
We have used microdialysis to measure the in vivo level of tyrosine hydroxylation in hippocampus of the freely moving rat. An inhibitor of aromatic amino acid decarboxylase, NSD-1015, was administered through the dialysis probe and the resulting accumulation of 3,4-dihydroxyphenylalanine (DOPA) in extracellular fluid of hippocampus was quantified. Administration of the tyrosine hydroxylase inhibitor, alpha-methyl-p-tyrosine, decreased extracellular DOPA to undetectable level. In addition, both systemic and local application of clonidine, an alpha 2-adrenergic agonist, produced a decrease in extracellular DOPA. In response to acute tail shock, a significant increase in extracellular DOPA was observed. Thus, it appears that in vivo accumulation of DOPA after local administration of NSD-1015 provides a reliable index of hippocampal tyrosine hydroxylation. We have used this technique to investigate whether prior exposure to chronic stress alters the in vivo level of tyrosine hydroxylation in hippocampus under basal conditions as well as in response to a novel stressor. In rats previously exposed to chronic cold stress, the basal accumulation of extracellular DOPA did not differ from naive controls. Acute tail shock, however, produced a significantly greater and more prolonged elevation in extracellular DOPA of chronically stressed rats. These data suggest that enhanced biosynthetic capacity of noradrenergic terminals may be one mechanism underlying adaptation to chronic stress.  相似文献   

5.
Tyrosine hydroxylation is considered to be the rate-limiting step in catecholamine synthesis. It is also assumed that under usual conditions, tyrosine 3-monooxygenase (EC 1.14.16.2) (tyrosine hydroxylase - TH) is close to full saturation with its l-tyrosine substrate and hence that raising the availability of l-tyrosine does not substantially increase 3,4-dihydroxyphenylalanine (DOPA) synthesis. We evaluated this in vivo by reverse dialysis of the aromatic-l-amino-acid decarboxylase (EC 4.1.1.28) inhibitor NSD-1015 (20 μM) and selected concentrations of l- or d-tyrosine. In striatum, extracellular DOPA levels increased linearly (maximum 250% control) as l-tyrosine concentrations were raised from 0–1000 μM. In medial prefrontal cortex, DOPA levels reached a maximum (300% control) at l-tyrosine 62.5–125 μM but still remained significantly elevated (200% control) at higher l-tyrosine concentrations (250–500 μM). At the l-tyrosine concentrations tested, DOPA levels were never below those of controls. d-tyrosine (62.5 μM) did not affect DOPA levels.  相似文献   

6.
Abstract— Tyrosine hydroxylase (TH) activity was measured in the carotid body. superior cervical ganglion and adrenal glands of the rat under normal conditions and at 48 h following exposure of the animals for 1-3 h in a low O2 atmosphere. Basal TH levels were 5-6 nmol/h/mg tissue for both the carotid body and the ganglion. Forty-eight hours after hypoxia, there was an increase in enzyme activity in both tissues which paralleled the severity of the hypoxia but was greater in the carotid body than the superior cervical ganglion. Thus, following exposure to 5% O2 in N2 for two 30-min periods (20-min interim), TH activity had increased by 50% in the carotid body and 33% in the ganglion; after exposure to 10% O2 in N2 for 3 h (continuous), TH levels were increased by 37% in the carotid body and 12% in the ganglion. In the adrenal gland, basal TH activity was 3.42 ± 1.87 nmol/h/mg tissue, and this value was unchanged following either level of hypoxia.  相似文献   

7.
The effects of a newly synthesized compound, 7-(3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy)-2(1H)-quinolinone (OPC-4392), on tyrosine hydroxylation in situ and in vitro were studied using rat striatal slices and tyrosine hydroxylase (TH) purified from bovine adrenal medulla, respectively. OPC-4392 dose-dependently inhibited L-dihydroxyphenylalanine (DOPA) formation in rat striatal slices with IC50 values of about 10(-6) M. The inhibitory effect of OPC-4392 on in situ DOPA formation was dose-dependently reversed by addition of sulpiride, a dopamine D2 receptor antagonist, whereas no change was observed by addition of nomifensine (5 X 10(-6) M), a blocker of dopamine uptake. From in vitro experiment using purified TH, OPC-4392 affected neither the enzymatic activity nor the Km value for 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). These results suggest that OPC-4392 impairs in situ DOPA formation by stimulating presynaptic dopamine D2 receptor as a dopamine agonist, and not by directly inhibiting the TH activity.  相似文献   

8.
Characterization of tyrosine hydroxylase from Manduca sexta   总被引:1,自引:0,他引:1  
In insects, 3,4-dihydroxyphenylalanine (DOPA) is required for tanning of newly formed cuticle and the production of melanin during some types of immune responses. DOPA is produced by the hydroxylation of tyrosine, and this reaction can be catalyzed by two types of enzymes: tyrosine hydroxylase (TH) and phenoloxidase (PO). TH is required for cuticle tanning in Drosophila melanogaster and for cuticle pigmentation in other insect species, but additional functions of TH have been uncertain. In contrast, an immune function for PO has been well documented. The goal of this study was to characterize TH from Manduca sexta with a focus on its possible contribution to cuticle tanning and immune-associated melanization. We cloned a full-length TH cDNA, purified recombinant TH, and confirmed that MsTH and MsPO have tyrosine hydroxylating activity. To determine possible functions, we analyzed TH expression profiles. TH mRNA and protein were present in eggs at the stage when the pharate larval cuticle begins to tan and also in the integument of molting larvae. The amount of TH in the integument was correlated with the degree of cuticle tanning. Unlike PO, which was found to be constitutively expressed by hemocytes and was present in plasma, TH was upregulated in hemocytes and the fat body in response to an immune challenge and remained intracellular. These data suggest that TH is required for cuticle tanning and immunity in M. sexta. Based on the collective information from many studies, we propose a model in which TH is a major producer of the DOPA required for both cuticle tanning and immune-associated melanization.  相似文献   

9.
The effects of a single and repeated electroconvulsive shock (ECS) (300 mA, 0.2 s) on tetrahydrobiopterin (BH4) levels and GTP-cyclohydrolase activity in the brain and adrenal glands of rats were examined. Twenty-four hours after the last ECS treatment (one/day for 7 days), biopterin levels were significantly elevated in the locus coeruleus, hippocampus, frontal cortex, hypothalamus, ventral tegmental area, and adrenal gland. There were no changes in biopterin levels after a single application of ECS. GTP-cyclohydrolase activity was significantly increased in the locus coeruleus, frontal cortex, hippocampus, hypothalamus, and adrenal gland 24 h after repeated ECS and remained elevated in certain tissues up to 8 days after the last treatment. Kinetic analysis of adrenal and locus coeruleus GTP-cyclohydrolase 1 day after 7 days of ECS showed significant changes in both Km and Vmax values. These data suggest that the long-term increases in BH4 levels and GTP-cyclohydrolase activity after repeated ECS may play a part in the mediation of the antidepressant effects of ECS.  相似文献   

10.
Neonatal changes in the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TrpH) and in the content of the co-factor, biopterin, were studied in rat midbrain for the first 20 days after birth. Changes in TH activity in the parotid and submandibular glands were also examined. Changes in TH activity per unit weight in the developing rat brain were briefly similar to those in the salivary glands; the activity increased from day 2 or 4 to day 9 after birth, and remained constant or slightly decreased at day 12, then rapidly increased on day 16. TrpH activity in the midbrain increased about twofold up to day 16. The biopterin concentration in the brain increased, reached a maximum level on day 12 after birth, and thereafter decreased. The effect of hyperthyroidism in rats given 0.2 mg/kg i.p. of thyroxine every 2 days postnatally was studied on the activity of TH in rat salivary glands at 12-day-old rats. In parotid or submandibular gland of hyperthyroid rats, TH activity increased at day 12 postnatally. In comparison with the effect on TH activity in the salivary glands, TH activity in the midbrain on day 20 postnatally was not induced by hyperthyroidism. Furthermore, increase of the TrpH activity and biopterin and catecholamine levels in the midbrain of hyperthyroid rats was not found on day 20 after birth in comparison with the corresponding controls. From these data, we suppose that postnatal hyperthyroidism may cause precocious induction of TH in rat salivary gland, but may not increase the activity of TH or TrpH, and the level of their co-factor, biopterin, in rat midbrain.  相似文献   

11.
The effect of induction of adrenal tyrosine hydroxylase (TH) by various centrally acting drugs on catecholamine levels in adrenal and plasma was investigated in rats. All the drugs tested, namely oxotremorine, Piribedil, B-HT 920, and HA-966, produced significant increases in adrenal dopamine content and plasma epinephrine level. Denervation of the adrenal abolished the increase in adrenal dopamine as it did the induction of tyrosine hydroxylase. The results suggest that the induced increase of adrenal TH activity, as mediated by certain drugs, results in an elevation of the plasma epinephrine level and that the adrenal dopamine content is a better indicator of the catecholamine-synthesizing capacity of the adrenal medulla than are the other catecholamines.  相似文献   

12.
Ischemic heart disease is more prevalent in men than in women. The remodeling of extracellular matrix, is a structural correlate of heart failure of ischemic origin and proliferation of cardiac fibroblasts is a key factor in this remodeling. We asked if proliferative response of male and female cardiac fibroblasts is differentially susceptible to hypoxia. DNA synthesis, using 3H-thymidine incorporation was compared under hypoxia (2% O2) in cardiac fibroblasts obtained from adult, age-matched male and female rat heart. In female cells DNA synthesis remained unchanged under hypoxia and this resistance was dependent on tyrosine kinase activation, as it was abolished in the presence of genistein, a tyrosine kinase inhibitor. Male cells, on the other hand, were susceptible to hypoxia and their DNA synthesis was reduced significantly (70%, (p < 0.0001). This effect was partially reversed by inhibition of tyrosine kinase. Western analysis showed a higher abundance of tyrosine phosphorylated proteins in male cells compared to female cells as well as differences in molecular weight of basal and hypoxia-induced tyrosine-phosphorylated proteins between male and female cells. The presence of estrogen (17- estradiol, 10 nM) altered the response of both cells to hypoxia. In female cells the combined effect of hypoxia and estrogen led to inhibition of DNA synthesis, whereas in male cells estrogen partially reversed the hypoxia-induced inhibition of DNA synthesis (37% (p < 0.01) inhibition in the presence of estrogen vs. 70% (p < 0.0001) inhibition in the absence of estrogen). The effects of estrogen in male and female cells were mediated via estrogen receptors as they were reversed by the pure anti-estrogen, ICI 182,780. Western analysis of cell lysate showed hypoxia-induced increase in the level of estrogen receptor in both male and female cells. Gel shift analysis showed hypoxia-induced increase in cytoplasmic ERE (estrogen response element)-binding activity and decrease in nuclear ERE-binding in male cells. In female cells cytoplasmic and nuclear ERE-binding activities remained unchanged under hypoxia. Together, these data demonstrate that while female cells are resistant to hypoxia-induced inhibition in DNA synthesis, male cells are susceptible; intracellular pathways involving tyrosine phosphorylation are involved in the response of both cells; and estrogen, via estrogen-receptor-dependent mechanisms, differentially alters the response of male and female cells to hypoxia.  相似文献   

13.
Abstract: The present study was carried out to investigate the effect of chronic heat exposure on tyrosine hydroxy-lase (TH) protein content in catecholaminergic rat brain-stem areas such as the anterior (LCA) and posterior (LCP) locus coeruleus, the substantia nigra (SN), the ventral tegmental area, and the dorsomedial (DMM) and the ventrolateral medulla and in the adrenal gland (AG). Male Sprague-Dawley rats were exposed to 34°C during 3, 7, or 14 days. Controls were kept at 25°C for the same period. In the LCA, TH content was decreased on day 7 (-34%) and 14 (-37%) of heat exposure. In the SN, TH protein content was decreased on day 7 (-25%) and 14 (-20%) after 34°C. In the DMM cell group, 14 days at 34°C produced a decrease (-20%) of TH content. In all of these structures, TH content variations were correlated with body temperature variations. In the AG, TH content increased progressively to peak (+31%) after 14 days of chronic heat exposure. This increase was also associated with body temperature modification. The selective and body temperature-related response of long-term TH protein content variations following chronic heat exposure observed in the LCA, SN, DMM, and AG could represent an adaptive physiological response of these catecholaminergic cells.  相似文献   

14.
15.
Salsolinol is one of the dopamine-derived tetrahydroisoquinolines and is synthesized from pyruvate or acetaldehyde and dopamine. As it cannot cross the blood-brain barrier, salsolinol as the R enantiomer in the brain is considered to be synthesized in situ in dopaminergic neurons. Effects of R and S enantiomers of salsolinol on kinetic properties of tyrosine hydroxylase [tyrosine, tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2], the rate-limiting enzyme of catecholamine biosynthesis, were examined. The naturally occurring cofactor of tyrosine hydroxylase, L-erythro-5,6,7,8-tetrahydrobiopterin, was found to induce allostery to the enzyme polymers and to change the affinity to the biopterin itself. Using L-erythro-5,6,7,8-tetrahydrobiopterin, tyrosine hydroxylase recognized the stereochemical structures of the salsolinols differently. The asymmetric center of salsolinol at C-1 played an important role in changing the affinity to L-tyrosine. The allostery of tyrosine hydroxylase toward biopterin cofactors disappeared, and at low concentrations of biopterin such as in brain tissue, the affinity to the cofactor changed markedly. A new type of inhibition of tyrosine hydroxylase, by depleting the allosteric effect of the endogenous biopterin, was found. It is suggested that under physiological conditions, such a conformational change may alter the regulation of DOPA biosynthesis in the brain.  相似文献   

16.
We have investigated the effect of veratridine on DOPA (3,4-dihydroxyphenylalanine) accumulation by the superior cervical ganglion of the rat. Incubation of the ganglion with veratridine (50 microM) causes a 10-fold increase in the rate of DOPA accumulation. Veratridine-stimulated DOPA accumulation is blocked by tetrodotoxin, but not by cholinergic or adrenergic antagonists or by decentralization of the ganglion. The cyclic nucleotide 8-bromo cyclic GMP does not increase DOPA accumulation, and 8-bromo cyclic AMP causes only a 2-fold increase in DOPA accumulation, which is additive with the effect of veratridine. Thus, the action of veratridine appears to be independent of these cyclic nucleotides. The effect of veratridine on DOPA accumulation is probably due to a stable modification of tyrosine hydroxylase, since an increase in tyrosine hydroxylase activity can be measured in cell-free extracts of veratridine-treated ganglia. Both the increase in DOPA accumulation and the stable activation of tyrosine hydroxylase are dependent upon extracellular Ca2+. The activation of tyrosine hydroxylase by veratridine may be mediated by the depolarization of, and the subsequent entry of Ca2+ into, ganglionic neurons.  相似文献   

17.
Phorbol 12,13-dibutyrate (PDBu) increased the production of 3,4-dihydroxyphenylalanine (DOPA) in the superior cervical ganglion of the rat. This effect occurred without a detectable lag and persisted for at least 90 min of incubation. The action of PDBu was half-maximal at a concentration of approximately 0.1 microM; at high concentrations, PDBu produced about a twofold increase in DOPA accumulation. PDBu increased DOPA production in decentralized ganglia and in ganglia incubated in a Ca2+-free medium. The action of PDBu was additive with the actions of dimethylphenylpiperazinium, muscarine, and 8-Br-cyclic AMP, all of which also increase DOPA accumulation, and was not inhibited by the cholinergic antagonists hexamethonium (3 mM) and atropine (6 microM). Finally, PDBu did not increase the content of cyclic AMP in the ganglion. Thus, the action of PDBu does not appear to be mediated by the release of neurotransmitters from preganglionic nerve terminals, by the stimulation of cholinergic receptors in the ganglion, or by an increase in ganglionic cyclic AMP. PDBu also increased the incorporation of 32Pi into tyrosine hydroxylase. PDBu activates protein kinase C, which in turn may phosphorylate tyrosine hydroxylase and increase the rate of DOPA synthesis in the ganglion.  相似文献   

18.
A Togari  K Kojima  T Nagatsu 《Life sciences》1985,37(17):1605-1611
Newly synthesized tyrosine hydroxylase (TH) induced by reserpine was compared with the enzyme in control rats in terms of the molecular and physiological properties. When repeated doses of reserpine were given at daily intervals for three days, the enzyme activity measured in homogenates of the adrenal glands was increased 3-fold. Furthermore, when TH in the adrenal glands from both control and reserpine-treated rats was purified, both total activity of the enzyme and the enzyme protein content purified from reserpine-treated rats were also about 3-fold higher than those of the control rats. The two purified enzymes revealed similar properties; a single subunit with a Mr of 60,000 was observed by SDS polyacrylamide gel electrophoresis, and the Km value for a pterin cofactor, 6-methyl-tetrahydropterin was about 300 microM. In contrast, in situ TH activity measured under physiological conditions at pH 7.2 in adrenal tissue slices was elevated 6-fold by reserpine pretreatment for 3 days, and was stimulated by carbachol (0.1 mM) and elevated K+ (52 mM) in a roughly proportional rather than additive way relative to slices from untreated rats. These results indicate that newly synthesized TH induced by reserpine in rat adrenal gland had similar properties as the enzyme in control rats and that reserpine increased not only the amount of TH molecules but also the in situ activity of TH. Since reserpine also increases the biosynthesis of tetrahydrobiopterin as demonstrated by Viveros and co-workers, this 6-fold increase in in situ TH activity may depend both upon the 3-fold increase in the amount of enzyme molecules and upon the increase of the physiologically available tetrahydrobiopterin in the adrenal gland.  相似文献   

19.
We have earlier shown that d-lysergic acid diethylamide, LSD and its 2-bromo derivative, BOL like the dopamine (DA) antagonists haloperidol increased the rate of the in vivo tyrosine hydroxylation in the striatum measured as the accumulation of DOPA after decarboxylase inhibition.Now we have found that several agents structurally similar to LSD increase the in vivo tyrosine hydroxylation in the striatum. Psilocybin (50 mg/kg i.p.) and N,N-dimethyltryptamine (50 mg/kg i.p.) caused a short-lasting increase of DOPA accumulation, while mescaline (10 – 100 mg/kg i.p.) did not increase the DOPA accumulation. A marked increase of DOPA accumulation was observed after the 5-hydroxytryptamine (5-HT) antagonist cyproheptadine. The effects of LSD and structurally related drugs on the DOPA accumulation in the striatum appear to be mediated via DA antagonism at receptor level. However, these agents may control the DOPA accumulation via other receptors than DA receptors e.g. 5-HT receptors. A control of DOPA accumulation via receptors other than DA receptors appears to be predominant after treatment with N,N-dimethyltryptamine or psilocybin.  相似文献   

20.
Changes in homospecific activity (unit of enzyme activity per unit of enzyme protein; Rush, Kindler and Udenfriend, 1974. Biochem. Biophys. Res. Commun., 61, 38) of tyrosine hydroxylase (TH) in the striatum of the brain were examined in MPTP-treated mice and parkinsonian patients. After a single injection of MPTP to mice, TH activity was acutely inhibited onlyin situ without changes in in vitro TH activity (Vmax) and TH protein; TH homospecific activity (TH Vmax/TH protein) did not change. After repeated injection of MPTP to mice for 8 days, in situ TH activity, in vitro TH Vmax, and TH protein were decreased in parallel, and TH homospecific activity did not change The result indicates that the decreases in in situ TH activity and in TH Vmax are due to the decrease in TH protein by nerve degeneration of dopaminergic neurons in MPTP treated mice. However, when MPP+ was infused in the striatum of rats for 3 hours, in vitro TH activity (Vmax) was decreased without changes in TH protein. Thus, TH homospecific activity was decreased. The results indicate that MPP+ inactivates TH protein in the striatum after continued infusion. In contrast, the homospecific activity of TH in post-mortem parkinsonian striatum was increased 3-fold. The increase in homospecific activity of residual TH in parkinsonian brain suggests such molecular changes in TH molecules as result in a compensatory increase in TH activity.Special issue dedicated to Dr. Sidney Udenfriend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号