首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  To evaluate the use of Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR)-derived probes and primers to specifically detect bacterial strains in an activated sludge microbial community.
Methods and Results:  ERIC-PCR was performed on two phenol-degrading bacterial strains, Arthrobacter nicotianae P1-7 and Klebsiella sp. P8-14. Their amplicons were DIG labelled for use as probes and then hybridized with ERIC-PCR fingerprints. The results showed the distinct band patterns for both bacterial strains. Strain-specific PCR primers were designed based on the sequences of ERIC-PCR bands. The DNA of each of these strains was successfully detected from its mixture with activated sludge DNA, either by using their respective ERIC-PCR-based probes for hybridization or by using species-specific primers for amplification, with higher sensitivity by latter method.
Conclusions:  Two phenol-degrading bacterial strains were identified from a mixture of activated sludge by using ERIC-PCR-based methods.
Significance and Impact of the Study:  The study demonstrated that the bacteria, which have important functions in complex wastewater treatment microbial communities, could be specifically detected by using ERIC-PCR fingerprint-based hybridization or amplification.  相似文献   

2.
通过特异引物扩增环境中氨氧化细菌16S rDNAV2保守区域,将该片段克隆到T-easy载体上,PCR产物经测序和定量PCR扩增体系鉴定,证实PCR扩增产物为氨氧化细菌16S rDNA保守序列,以含该序列的重组质粒作为定量PCR监测氨氧化细菌数量的DNA标准品。用荧光定量PCR技术比较了五氯酚(PCP)对好氧颗粒污泥和活性污泥中氨氧化细菌数量的影响。结果表明,不加PCP的反应器中,好氧颗粒污泥和活性污泥中氨氧化细菌的数量分别为4.28×107±5.44×106cells/(g干污泥)和2.51×109±8.61×108cells/(g干污泥)。随着PCP浓度的增加(0~50mg/L),PCP对氨氧化细菌数量的影响不大(P>0.05),而且,污泥中氨氧化细菌的数量与氨氮的去除率无直接的正相关关系(P>0.05),PCP主要是抑制氨氧化细菌的代谢活性导致污泥氨氮去除效率降低。  相似文献   

3.
分子检测技术对活性污泥中氨氧化细菌的比较研究   总被引:12,自引:2,他引:10  
采用PCR扩增、随机克隆测序等技术,分析处理含高浓度氨氮的废水处理系统不同驯化时期的4个活性污泥样品,对样品中氨氧化细菌(AOB)的种类和氨单加氧酶(AMO)的活性进行分析比较,并在国内首次采用PCR变性梯度凝胶电泳(DGGE)相结合的技术对样品中总的细菌类群的差异进行研究。结果表明所检测到的氨氧化细菌优势菌群均属于变形细菌的β亚类,与Nitrosomonas sp.具有较高的相似性。活性污泥驯化成熟后,废水处理系统中AMO的活性有明显提高,活性污泥中的细菌类群更加集中,优势菌群相对稳定,系统对废水的处理效率也相应提高。结果表明采用分子检测技术有利于更全面地了解AOB的类群和功能,进而改善废水处理系统的处理效果。  相似文献   

4.
The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus mobilis-like bacteria. The phylogenetic affiliation suggested by fluorescent in situ hybridization (FISH) was confirmed by isolation of N. mobilis as the numerically dominant ammonia oxidizer and subsequent comparative 16S rRNA gene (rDNA) sequence and DNA-DNA hybridization analyses. For molecular fine-scale analysis of the ammonia-oxidizing population, a partial stretch of the gene encoding the active-site polypeptide of ammonia monooxygenase (amoA) was amplified from total DNA extracted from ammonia oxidizer isolates and from activated sludge. However, comparative sequence analysis of 13 amoA clone sequences from activated sludge demonstrated that these sequences were highly similar to each other and to the corresponding amoA gene fragments of Nitrosomonas europaea Nm50 and the N. mobilis isolate. The unexpected high sequence similarity between the amoA gene fragments of the N. mobilis isolate and N. europaea indicates a possible lateral gene transfer event. Although a Nitrobacter strain was isolated, members of the nitrite-oxidizing genus Nitrobacter were not detectable in the activated sludge by in situ hybridization. Therefore, we used the rRNA approach to investigate the abundance of other well-known nitrite-oxidizing bacterial genera. Three different methods were used for DNA extraction from the activated sludge. For each DNA preparation, almost full-length genes encoding small-subunit rRNA were separately amplified and used to generate three 16S rDNA libraries. By comparative sequence analysis, 2 of 60 randomly selected clones could be assigned to the nitrite-oxidizing bacteria of the genus Nitrospira. Based on these clone sequences, a specific 16S rRNA-targeted probe was developed. FISH of the activated sludge with this probe demonstrated that Nitrospira-like bacteria were present in significant numbers (9% of the total bacterial counts) and frequently occurred in coaggregated microcolonies with N. mobilis.  相似文献   

5.
全程自养脱氮反应系统的微生物区系分析   总被引:1,自引:0,他引:1  
在建立全程自养脱氮反应器的基础上,以活性污泥为对照,分析了脱氮反应器内真菌、细菌和放线菌的数量、种类(类群)、种(株系)数和优势种(株系或类群),及硝化菌和业硝化菌的数量变化。研究结果表明,与活性污泥相比,全程自养脱氮反应器内微生物数量、种类和区系组成发生很大变化。自养脱氮反应器内亚硝化菌数量显著增加,说明亚硝化菌的积累是全程自养脱氮系统的一个显著特点。  相似文献   

6.
The effects of growth type, including attached growth, suspended growth, and combined growth, on the characteristics of communities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were studied in three lab-scale Anaerobic/Anoxicm-Oxicn (AmOn) systems. These systems amplified activated sludge, biofilms, and a mixture of activated sludge and biofilm (AS-BF). Identical inocula were adopted to analyze the selective effects of mixed growth patterns on nitrifying bacteria. Fluctuations in the concentration of nitrifying bacteria over the 120 days of system operation were analyzed, as was the composition of nitrifying bacterial community in the stabilized stage. Analysis was conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. According to the DGGE patterns, the primary AOB lineages were Nitrosomonas europaea (six sequences), Nitrosomonas oligotropha (two sequences), and Nitrosospira (one sequence). The primary subclass of NOB community was Nitrospira, in which all identified sequences belonged to Nitrospira moscoviensis (14 sequences). Nitrobacter consisted of two lineages, namely Nitrobacter vulgaris (three sequences) and Nitrobacter alkalicus (two sequences). Under identical operating conditions, the composition of nitrifying bacterial communities in the AS-BF system demonstrated significant differences from those in the activated sludge system and those in the biofilm system. Major varieties included several new, dominant bacterial sequences in the AS-BF system, such as N. europaea and Nitrosospira and a higher concentration of AOB relative to the activated sludge system. However, no similar differences were discovered for the concentration of the NOB population. A kinetic study of nitrification demonstrated a higher maximum specific growth rate of mixed sludge and a lower half-saturation constant of mixed biofilm, indicating that the AS-BF system maintained relatively good nitrifying ability.  相似文献   

7.
The microbial community structures of a conventional activated sludge and MBR systems treating the municipal wastewater were studied using Fluorescent in-situ Hybridization (FISH) analysis to identify differences in both systems. The oligonucleotide probes specific for overall bacteria, including α-, β-, and γ-subclasses of Proteobacteria, ammonia-oxidizing bacteria (Nitrosomonas), and nitrite-oxidizing bacteria (Nitrobacter) were used to compare the microbial community structure of both systems. A trend of less hybridization with bacteria-specific probe EUB338 was observed in MBR systems operated under aerobic condition, compared to conventional activated sludge system. The less hybridization trend with the probes could be associated with low ribosomal RNA (rRNA) content in the biomass, which suggests that the biomass in the MBR system was not in a physiological state characteristic for growth due to low substrate per unit biomass  相似文献   

8.
In this study, dideoxy sequencing and 454 high-throughput sequencing were used to analyze diversities of the ammonia monooxygenase (amoA) genes and the 16S rRNA genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in six municipal wastewater treatment plants. The results showed that AOB amoA genes were quite diverse in different wastewater treatment plants while the 16S rRNA genes were relatively conserved. Based on the observed complexity of amoA and 16S rRNA genes, most of the AOB can be assigned to the Nitrosomonas genus, with Nitrosomonas ureae, Nitrosomonas oligotropha, Nitrosomonas marina, and Nitrosomonas aestuarii being the four most dominant species. From the sequences of the AOA amoA genes, most AOA observed in this study belong to the CGI.1b group, i.e., the soil lineage. The AOB amoA and 16S rRNA genes were quantified by quantitative PCR and 454 high-throughput pyrosequencing, respectively. Although the results from the two approaches show some disconcordance, they both indicated that the abundance of AOB in activated sludge was very low.  相似文献   

9.
10.
Summary In recent years, several novel processes for N-removal almost without consumption of organic carbon under oxygen-limited conditions have been discovered, which may be a promising option for low-cost N-removal from ammonia-rich wastewater. In this study, a laboratory scale suspended-sludge reactor was continuously operated under low dissolved oxygen concentration. High N-removal efficiency and subsequently degradation of the reactor were observed. Molecular analysis based on a partial-16S rRNA gene library showed that, at the stage of high efficiency, the biomass was composed of Planctomycete-like bacteria (up to 40%) and heterotrophic organisms (approximately 60%) as well as a few ammonia-oxidizing bacteria and at the stage of degradation, the autotrophic ammonia-oxidizing bacteria were dominant (up to 70%) and Planctomycete-like bacteria were no longer found in the sludge. Three specific Planctomycete-16S rRNA-targeted probes were used for fluorescence in situ hybridization (FISH). The results showed that at the high-efficiency stage, Planctomycete-like bacteria, present at approximately 20% of the total bacteria, lay frequently in the middle of flocs, while the heterotrophic bacteria occurred within the outer layers. This work revealed that the change of the microbial populations is the key reason for reactor deterioration, and the heterotrophic bacteria probably play an important role in sustaining the biomass structure of the sludge.  相似文献   

11.
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus Nitrospira. The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% ± 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% ± 0.28% of the biosludge population in the municipal WWTP and 0.37% ± 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.  相似文献   

12.
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus NITROSPIRA: The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% +/- 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% +/- 0.28% of the biosludge population in the municipal WWTP and 0.37% +/- 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.  相似文献   

13.

The dominant filamentous bacteria associated with bulking incidents in Japanese activated sludge plants with nutrient removal were identified and their quantitative correlations with sludge settleability were assessed, with the aim of controlling bulking incidents by specifically suppressing bacterial growth. Fluorescence in situ hybridization (FISH) analyses using existing oligonucleotide FISH probes indicated that the presence of Eikelboom type 1851 filamentous bacteria belonging to the phylum Chloroflexi is correlated with biomass settleability in the municipal wastewater treatment plants examined. Real-time quantitative PCR (qPCR) assays developed in this study also showed a linear correlation between type 1851 filament members and sludge settleability, with the exception of some winter samples. The real-time qPCR assays and 16S ribosomal RNA gene amplicon sequencing to reveal the microbial community of activated sludge showed that the abundance of type 1851 at 200 mL g−1 of sludge volume index was estimated to be about 1.9% of the total microbial cells. The abundance of type 1851 served as a bulking indicator in plants where type 1851 was dominant.

  相似文献   

14.
A method for quantifying bacterial populations introduced into an activated-sludge microbial community is described. The method involves extraction of DNA from activated sludge, appropriate dilution of the extracted DNA with DNA extracted from nonintroduced activated sludge, PCR amplification of a gyrB gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the electrophoresed PCR product by densitometry. The adequacy of the method was examined by analyzing the population dynamics of two phenol-degrading bacteria, Pseudomonas putida BH and Comamonas sp. strain E6, that had been introduced into phenol-digesting activated sludge. The density of each of the two populations determined by the PCR method immediately after the introduction was consistent with the density estimated from a plate count of the inoculum. This quantitative PCR method revealed different population dynamics for the two strains in the activated sludge under different phenol-loading conditions. The behavior of both of these strains in the activated sludge reflected the growth kinetics of the strains determined in laboratory axenic cultures.  相似文献   

15.
Sequence retrieval from single bands of polymerase chain reaction (PCR)-denaturing gel electrophoresis (DGE) profiles is an important but often difficult step for molecular diversity analysis of complex microbial communities such as activated sludge systems. We analyzed the temperature gradient gel electrophoresis (TGGE) profiles of PCR-amplified 16S rDNA fragments from an activated sludge sample of a coking wastewater treatment plant. Single bands were excised, and a clone library was constructed for each. Sequence heterogeneity in each single band was found to be significantly overestimated due to single-stranded DNA (ssDNA) contamination formed during the PCR amplification, since only 10-60% of library clones of each single TGGE band had identical migration behavior compared with the parent band. Three methods, digestion with mung bean nuclease, optimization of PCR amplification, and purification via denatured polyacrylamide gel electrophoresis (d-PAGE), were compared for their ability to minimize ssDNA contamination, with the last one being the most efficient. After using d-PAGE to minimize ssDNA to a nearly nondetectable level, 70-100% of library clones for each single TGGE band had identical migration compared with the parent band. Several sequences were found in each of six single bands, and this co-migration could be predicted with the Poland software. The predominant bacteria of the activated sludge were assessed via a combination of sequence retrieval from each single TGGE band and band intensity analysis. Only beta and alpha subclasses of the Proteobacteria were detected, 93.8% and 6.2%, respectively. Our work suggests that prior to constructing a clone library to retrieve the actual sequence diversity of a single DGE band, it is advisable to minimize ssDNA contamination to a nondetectable level.  相似文献   

16.
AIMS: To isolate and characterize lytic-bacteriophages specific to Microlunatus phosphovorus, and prepare fluorescently labelled phages (FLPs) for the rapid detection of the host bacterium in activated sludge. METHODS AND RESULTS: Isolation of bacteriophages lytic to M. phosphovorus was attempted by applying supernatants of activated sludge processes on the lawn of M. phosphovorus JCM9379 for plaque formation. Thirteen bacteriophage isolates were obtained. The restriction fragment length polymorphism analysis distinguished them into two different bacteriophages designated as phiMP1 and phiMP2. They were found to possess double-stranded DNA and host specificity. Morphological observations were done by electron microscopy. The bacteriophage particles stained by SYBR Green I was shown to be applicable to detect their host bacterial cells mixed with activated sludge. CONCLUSIONS: Two M. phosphovorus-specific bacteriophages were isolated and classified as Siphoviridae. FLPs of them were prepared, and successfully applied to detect the host bacterium added into the activated sludge. SIGNIFICANCE AND IMPACT OF THE STUDY: At least some of bacteria in activated sludge are susceptible to their related bacteriophages. Bacteriophages lytic to activated sludge bacteria could be affecting the bacterial population in activated sludge. The FLPs could be used for the easy-rapid detection of their host bacterium in activated sludge.  相似文献   

17.
Primers targeting 16S rRNA genes were designed to detect and quantify Eikelboom type 021N organisms by real-time PCR. Eikelboom type 021N filamentous bulking was induced in a laboratory-scale sequencing batch reactor and the evolution of Eikelboom type 021N 16S rRNA and 16S rRNA genes was monitored. A significant correlation was found between the sludge volume index and the amount of these filamentous organisms present in the sludge (r 2=94.6%, n=10, P<0.01), as measured by real-time PCR. The amount of Eikelboom type 021N 16S rRNA genes increased by a factor of 21 during the experiment, while the 16S rRNA increased by a factor of 33. Moreover, Eikelboom type 021N 16S rRNA increased with increased feeding frequency. It was observed that the RNA:DNA ratio peaked before the sludge volume index increased. In parallel, a fluorescence in situ hybridization study indicated a factor of four increase in the length of Eikelboom type 021N filaments, due to a factor of two increase in both length and number of Eikelboom type 021N filaments. Further, an increase in the fraction of filaments extending outside the activated sludge flocs was observed (19–55%). Monitoring of 16S rRNA genes and 16S rRNA of Eikelboom type 021N was shown to be valuable in evaluating activated sludge settling characteristics; and measuring RNA:DNA ratios may be used as an early warning tool for sludge bulking.  相似文献   

18.
Summary This study aimed at isolating filamentous bacteria from full-scale activated sludge processes and studying them in pure culture. Three cultures were isolated using conventional microbiological techniques. The isolates were positively identified as Gordonia amarae, Thiothrix nivea and Type 1863/Acinetobacter spp., using fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. However, a ‘morphological shift’ from filamentous to single-cell form was observed in pure culture. The application of fluorescent in situ hybridization (FISH) showed filamentous bacteria to be much more diverse in their ability to adapt to their changing enviroments. Pure culture studies of filamentous bacteria form the basis for application in full-scale activated sludge plants. It therefore remains important that the taxonomic status of filamentous bacteria be determined.  相似文献   

19.
We investigated the changes in the community structure of ammonia-oxidizing bacteria (AOB) in activated sludge during incubation of the sludge in a medium selective for AOB. The number of AOB present in the activated sludge sample was enumerated by the most-probable-number (MPN) method. Both the activated sludge sample and the incubated samples for MPN determination were analyzed by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE). Universal PCR-DGGE indicated that even after 40-d incubation in a medium selected for AOB, the MPN samples were predominantly composed of heterotrophic bacteria and not AOB. Denitrification by heterotrophic bacteria might lead to the underestimation of the MPN count of AOB. Not dominated in whole bacteria, one species of AOB was detected in both original activated sludge and samples after MPN incubation by PCR-DGGE targeting AOB. Furthermore, two new species of AOB were detected only after incubation. Therefore, the community structure of AOB in the MPN samples partially resembled that in the original activated sludge.  相似文献   

20.
Propidium monoazide (PMA) has been used to determine viable microorganisms for clinical and environmental samples since selected naked DNA which was covalently cross-linked by this dye could not be PCR-amplified. In this study, we applied PMA to the activated sludge samples composed of complex bacterial populations to investigate the viability of human fecal bacteria and to determine the heat-tolerant bacteria by high-throughput sequencing of 16S ribosomal DNA (rDNA) V3 region. The methodological evaluation suggested the validity, and about 2–3 magnitude signals decreasing from the stained DNA were observed. However, the nest PCR, which was previously conducted to further minimize signals from dead cells, seemed not suitable perhaps due to the limitation of the primers. On one hand, for typical human fecal bacteria, less than half of them were viable, and most genera exhibited the similar viable percentages. It was interesting that many “unclassified bacteria” showed low viability, implying their sensitivity to environmental change. On the other hand, after heating at 60 °C for 4 h, the bacteria with high survival rate in activated sludge samples included those reported thermophiles or heat-tolerant lineages, such as Anoxybacillus and diverse species in Actinobacteria, and some novel ones, such as Gp16 subdivision in Acidobacteria. In summary, our results took a glance at the fate of fecal bacteria during sewage treatment and established an example for identifying tolerant species to lethal shocks in a complex community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号