首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A simplified method for isolating highly purified laterobasal membranes (LBM) from enterocytes is based on treatment of membranes with 8mm CaCl2 concentration in order to aggregate intracellular membrane contaminants. The resultant LBM showed an average 15-fold enrichment and constituted 8% of the original K-stimulated phosphatase in the initial crude homogenate. It showed typical LBM migration on counter-current distribution (CCD) and was essentially free of contamination with endoplasmic reticulum and Golgi membranes. This method is highly efficient and yields sufficient purified LBM to allow comprehensive analysis of enterocyte membrane events.  相似文献   

2.
Escherichia coli heat stable enterotoxin (STa) and the newly identified endogenous ligand guanylin bind to an intestinal receptor and activate membrane bound guanylate cyclase. We compared STa binding and affinity crosslinking of STa receptors in human small intestine to those in the Caco-2 human colon carcinoma cell line. STa had similar kinetics of binding in human intestinal and Caco-2 brush border membranes. In both human intestine and Caco-2 brush border membranes, multiple specifically radiolabeled bands, including a 140–165 kDa band, were identified by affinity crosslinking. However, in human intestine the most prominent autoradiographic species was a 60 kDa band. A 60 kDa protein was also specifically immunoprecipitated from solubilized human brush border membranes using antisera raised against a cloned STa receptor fusion protein. Our observations of multiple crosslinked proteins in human intestine and Caco-2 cells could be explained by the existence of several members of a family of STa receptors and/or the existence of smaller STa binding proteins generated by the protease cleavage of a larger complete STa receptor. © 1993 Wiley-Liss, Inc.  相似文献   

3.
By photoaffinity labeling of brush border membrane vesicles from rabbit small intestine with photoreactive derivatives of beta-lactam antibiotics and dipeptides, a binding protein for dipeptides and beta-lactam antibiotics with an apparent molecular weight of 127,000 was labeled. The labeled 127 kDa polypeptide could be solubilized with the non-ionic detergents Triton X-100, n-octyl glucoside or CHAPS. If the vesicles were solubilized prior to photoaffinity labeling, no clear incorporation of radioactivity into the 127 kDa polypeptide occurred indicating a loss of binding ability upon solubilization. By affinity chromatography of solubilized brush border membrane proteins on an agarose wheat germ lectin column, the binding protein for dipeptides and beta-lactam antibiotics of Mr 127,000 was retained on the column. With N-acetyl-D-glucosamine the photolabeled binding protein for beta-lactam antibiotics and dipeptides was eluted together with the brush border membrane-bound enzyme aminopeptidase N. Separation from aminopeptidase N and final purification was achieved by anion-exchange chromatography on DEAE-sephacel. Polyclonal antibodies against the purified binding protein were raised in guinea pigs. The photolabeled 127 kDa protein could be precipitated from solubilized brush border membranes with these antibodies. Incubation of brush border membrane vesicles with antiserum prior to photoaffinity labeling significantly reduced the extent of labeling of the 127 kDa protein. Treatment of brush border membrane vesicles with antiserum significantly inhibited the efflux of the alpha-aminocephalosporin cephalexin from the brush border membrane vesicles compared to vesicles treated with preimmune serum. These studies indicate that the binding protein for dipeptides and beta-lactam antibiotics of apparent molecular weight 127,000 in the brush border membrane of rabbit small intestinal enterocytes is directly involved in the uptake process of small peptides and orally active beta-lactam antibiotics across the enterocyte brush border membrane.  相似文献   

4.
After binding of epidermal growth factor (EGF), the EGF receptor (EGFR) becomes autophosphorylated via tyrosine. The ligand-activated receptor is internalized by endocytosis and subsequently degraded in the lysosomal pathway. To follow EGFR activation after EGF stimulation, we generated antisera to the EGFR phosphotyrosine sites pY992 and pY1173. The SH2 region of Shc binds to both these sites. Both antisera identified EGFR after EGF binding and did not crossreact with the unactivated receptor. The intracellular distribution of phosphorylated EGFR after ligand binding was traced by two-color immunofluorescence confocal microscopy and immunoelectron microscopy. Before EGF stimulation EGFR was primarily located along the cell surface. When internalization of activated EGFR was inhibited by incubation with EGF on ice, Y992- and Y1173-phosphorylated EGFR were located along the plasma membrane. Ten minutes after internalization at 37C, Y992- and Y1173-phosphorylated EGFR were almost exclusively located in early endosomes, as shown by co-localization with EEA1. Immunoelectron microscopy confirmed that phosphorylated EGFR was located in intracellular vesicles resembling early endosomes. After EGF stimulation, the adaptor protein Shc redistributed to EGFR-containing early endosomes. Our results indicate that EGFR activation of Shc via tyrosine-phosphorylated Y992 and Y1173 occurred in early endocytic compartments, and support a role for membrane trafficking in intracellular signaling.  相似文献   

5.
Synthesis and deposition of immunoglobulins in the brush border was studied in organ-cultured pig small intestinal mucosal explants. Surprisingly, comparable amounts of IgM and IgA were synthesized during a 6-h pulse, and also newly made IgG was detected in media and explants, including the microvillar fraction. For IgA and IgM, this subcellular distribution is consistent with basolateral-to-apical transcytosis, mediated by the polymeric immunoglobulin receptor. IgG is a ligand for the Fc receptor FcRn, and beta2-microglobulin, the light chain of FcRn, coclustered in immunogold double labeling with IgG in subapical endosomes and in the basolateral membrane of enterocytes. In addition, beta2-microglobulin was copurified with IgG on protein G-Sepharose. Apical endocytosis of IgG, as judged by internalization of fluorescent protein G, was not detectable except in a few isolated cells. This suggests that IgG in the adult small intestine is transported across the enterocyte mainly in the basolateral to apical direction. Significant fractions of all immunoglobulins bound to lactoseagarose, indicating that "anti-glycosyl" antibodies, raised against commensal gut bacteria, are synthesized locally in the small intestine. By partial deposition in the brush border, these antibodies therefore may have a protective function by preventing lectin-like pathogens from gaining access to the brush border surface.  相似文献   

6.
Intelectin is a mammalian Ca2+-dependent, D-galactosyl-specific lectin expressed in Paneth and goblet cells of the small intestine and proposed to serve a protective role in the innate immune response to parasite infection. In addition, it is structurally identical to the intestinal lactoferrin receptor known to reside in the enterocyte brush border. To clarify this apparent discrepancy with regard to localization, the aim of this work was to study the cellular and subcellular distribution of small intestinal intelectin by immunofluorescence and immunogold electron microscopy. Secretory granules of lysozyme-positive Paneth cells in the bottom of the crypts as well as goblet cells along the crypt-villus axis were intensively labeled with intelectin antibodies, but quantitatively, the major site of intelectin deposition was the enterocyte brush border. This membrane is organized in stable glycolipid-based lipid raft microdomains, and like the divalent lectin galectin-4, intelectin was enriched in microvillar "superrafts", i.e., membranes that resist solubilization with Triton X-100 at 37 degrees C. This strategic localization suggests that the trimeric intelectin, like galectin-4, serves as an organizer and stabilizer of the brush border membrane, preventing loss of digestive enzymes to the gut lumen and protecting the glycolipid microdomains from pathogens.  相似文献   

7.
Aberrant activation of the epidermal growth factor receptor (EGFR), a prototypic receptor tyrosine kinase, is critical to the biology of many common cancers. The molecular events that define how EGFR transmits an extracellular ligand binding event through the membrane are not understood. Here we use a chemical tool, bipartite tetracysteine display, to report on ligand-specific conformational changes that link ligand binding and kinase activation for full-length EGFR on the mammalian cell surface. We discover that EGF binding is communicated to the cytosol through formation of an antiparallel coiled coil within the intracellular juxtamembrane (JM) domain. This conformational transition is functionally coupled to receptor activation by EGF. In contrast, TGFα binding is communicated to the cytosol through formation of a discrete, alternative helical interface. These findings suggest that the JM region can differentially decode extracellular signals and transmit them to the cell interior. Our results provide new insight into how EGFR communicates ligand-specific information across the membrane.  相似文献   

8.
Epidermal growth factor and insulin share many biological activities, including stimulation of cell proliferation, ion flux, glycolysis, fatty acid and glycogen synthesis, and activation of receptor-linked tyrosine kinase activity. In the kidney, insulin has been shown to regulate transport processes and inhibit gluconeogenesis in the proximal tubule. Since the kidney represents a major source of EGF, the present studies investigated whether proximal tubule contained EGF receptors, whether EGF receptors were localized to apical or basolateral membranes, and whether EGF receptor activation participated in the regulation of an important proximal tubule function, gluconeogenesis. Specific EGF receptors were demonstrated in the basolateral membrane of proximal tubule. Following incubation with 125I EGF, basolateral membranes demonstrated equilibrium binding at 4 degrees C and 23 degrees C. There was 78 +/- 2% specific binding (n = 13). The dissociation constant (Kd) was 1.5 x 10(-9) M and maximal binding was 44 fmol/mg protein. There was ninefold more specific binding to proximal tubule basolateral membrane than to brush border membrane. In basolateral, but not brush border membranes, EGF induced phosphorylation of the tyrosine residues of intrinsic membrane proteins, including a 170 kDa protein, corresponding to the EGF receptor. In the presence of the gluconeogenic substrates, alanine, lactate, and succinate, proximal tubule suspensions synthesized glucose. EGF inhibited glucose production in a concentration-dependent manner over a concentration range of 3 x 10(-11) to 3 x 10(-9) M. In addition, EGF inhibited angiotensin II-stimulated glucose production in the proximal tubule suspensions. EGF did not significantly increase net glucose metabolism nor decrease cellular ATP concentrations. Therefore, these studies demonstrated that rat proximal tubule contained specific receptors for EGF that were localized to the basolateral membrane and linked to tyrosine kinase activity. EGF significantly inhibited proximal tubule glucose production without significantly increasing net glucose consumption.  相似文献   

9.
Binding of ligand to the epidermal growth factor receptor (EGFR) initiates a series of processes including activation of the intrinsic EGFR tyrosine kinase, receptor autophosphorylation, and the assembly of active signaling complexes at the plasma membrane. Concomitantly, receptor trafficking is initiated, and the receptor is ultimately delivered to the lysosome, where it is degraded. Virtually all studies on EGFR trafficking have used fibroblasts and transformed cells. Because EGFR exerts a potent effect on the physiology of epithelial cells, we examined the regulation of EGFR activity and trafficking in nontransformed human mammary epithelial cells (HMEC). We found that HMEC that displayed a luminal phenotype were largely unresponsive to EGF and maintained a majority of their EGFR at the cell surface. In contrast, HMEC with a basal phenotype were highly responsive to EGF and, at steady state in the absence of exogenous ligand, distributed empty EGFR into intracellular pools. Maintenance of the intracellular pools was a direct consequence of specific and rapid endocytosis of the empty EGFR. The trafficking pattern was EGFR specific, used coated pits, and did not require receptor tyrosine kinase activity. Such an mechanism redistributes EGFR signaling potential among different membrane domains and into vesicles with unique biochemical microenviroments. In addition, our data show that EGFR endocytosis can be regulated in the absence of ligand binding and receptor activation in a cell-type-specific manner. J. Cell. Physiol. 180:448–460, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

10.
Absorption of dietary fat in the small intestine is accompanied by a rise of intestinal alkaline phosphatase (IAP) in the serum and of secretion of IAP-containing surfactant-like particles from the enterocytes. In the present work, fat absorption was studied in organ cultured mouse intestinal explants. By immunofluorescence microscopy, fat absorption caused a translocation of IAP from the enterocyte brush border to the interior of the cell, whereas other brush-border enzymes were unaffected. By electron microscopy, the translocation occurred by a rapid (5 min) induction of endocytosis via clathrin-coated pits. By 60 min, IAP was seen in subapical endosomes and along membranes surrounding fat droplets. IAP is a well-known lipid raft-associated protein, and fat absorption was accompanied by a marked change in the density and morphology of the detergent-resistant membranes harboring IAP. A lipid analysis revealed that fat absorption caused a marked increase in the microvillar membrane contents of free fatty acids. In conclusion, fat absorption rapidly induces a transient clathrin-dependent endocytosis via coated pits from the enterocyte brush border. The process selectively internalizes IAP and may contribute to the appearance of the enzyme in serum and surfactant-like particles.  相似文献   

11.
The enterocyte brush border of the small intestine is a highly specialized membrane designed to function both as a high capacity digestive/absorptive surface of dietary nutrients and a permeability barrier towards lumenal pathogens. It is characterized by an unusually high content of glycolipids (∼30% of the total microvillar membrane lipid), enabling the formation of liquid ordered microdomains, better known as lipid rafts. The glycolipid rafts are stabilized by galectin-4, a 36 kDa divalent lectin that cross-links galactosyl (and other carbohydrate) residues present on membrane lipids and several brush border proteins, including some of the major hydrolases. These supramolecular complexes are further stabilized by intelectin, a 35 kDa trimeric lectin that also functions as an intestinal lactoferrin receptor. As a result, brush border hydrolases, otherwise sensitive to pancreatic proteinases, are protected from untimely release into the gut lumen. Finally, anti-glycosyl antibodies, synthesized by plasma cells locally in the gut, are deposited on the brush border glycolipid rafts, protecting the epithelium from lumenal pathogens that exploit lipid rafts as portals for entry to the organism.  相似文献   

12.
The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ~40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.  相似文献   

13.
Brush border membrane vesicles prepared from rabbit small intestine are essentially free of basolateral membranes and nuclear, mitochondrial, microsomal and cytosolic contaminants. The resulting brush border membrane is unstable due to intrinsic lipases and proteinases. The PC transfer between small unilamellar lipid vesicles or mixed lipid micelles as the donor and the brush border membrane vesicles as the acceptor is protein-mediated. After proteolytic treatment of brush border membrane with papain or proteinase K the PC transfer activity is lost and the kinetics of PC uptake are similar to those measured with erythrocytes under comparable conditions. Evidence is presented to show that the PC transfer activity resides in the apical membrane of the enterocyte and not in the basolateral part of the plasma membrane. Furthermore, the activity is localized on the external surface of the brush border membrane exposed to the aqueous medium with its active centre probably not in direct contact with the lipid bilayer of the membrane. Proteins released from brush border membrane by proteolytic treatment catalyze PC exchange between different populations of small unilamellar vesicles. Furthermore, these protein(s) bind(s) PC forming a PC-protein complex.  相似文献   

14.
The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internalization. CTB binding and endocytosis were performed in organ-cultured pig mucosal explants and studied by fluorescence microscopy, immunogold electron microscopy, and biochemical fractionation. By fluorescence microscopy CTB, bound to the microvillar membrane at 4 degrees C, was rapidly internalized after the temperature was raised to 37 degrees C. By immunogold electron microscopy CTB was seen within 5 min at 37 degrees C to induce the formation of numerous clathrin-coated pits and vesicles between adjacent microvilli and to appear in an endosomal subapical compartment. A marked shortening of the microvilli accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border and is internalized by a cholesterol-independent but clathrin-dependent endocytosis. In addition to GM(1), sucrase-isomaltase may act as a receptor for CTB.  相似文献   

15.
Brush border membranes isolated from the proximal and distal portions of the rat small intestine were examined to see whether qualitative differences exist in their glycoprotein constituents. After SDS-polyacrylamide gel electrophoresis distinct differences were observed, indicating that the protein and glycoprotein profiles of the distal intestine are less complex. A competitive radioassay of lectin receptors revealed that there are significantly more wheat germ agglutinin and succinylated wheat germ agglutinin receptors present on brush border membranes from proximal intestine as compared to distal intestine. However, binding of Ricinus communis agglutinin I to brush border membranes of distal intestine was 2-times higher than that of proximal intestine. These segmental differences were also reflected in the binding patterns of individual brush border membrane hydrolases to wheat germ agglutinin and R. communis agglutinin I. Carbohydrate analysis demonstrated that the overall sugar content of brush border membranes is higher in distal intestine, with more galactose and sialic acid residues. No difference was found in the content of N-acetylglucosamine between the two segments. When brush border membranes from both segments were used as acceptors for galactosyltransferase, those from proximal intestine were better acceptors. Neuraminidase treatment significantly enhanced galactose oxidase/sodium borotritide labeling of brush border membranes from distal intestine and altered the electrophoretic mobility of dipeptidyl aminopeptidase IV and aminopeptidase N. No significant changes in labeling or enzyme electrophoretic mobility were noted in brush border membranes from proximal intestine after neuraminidase treatment. These studies indicate that the glycoproteins from brush border membranes of proximal and distal intestine are qualitatively different and that the glycoproteins from distal intestine may have more completed oligosaccharide side chains.  相似文献   

16.
Intestinal cholesterol absorption is an important regulator of serum cholesterol levels. Ezetimibe is a specific inhibitor of intestinal cholesterol absorption recently introduced into medical practice; its mechanism of action, however, is still unknown. Ezetimibe neither influences the release of cholesterol from mixed micelles in the gut lumen nor the transfer of cholesterol to the enterocyte brush border membrane. With membrane-impermeable Ezetimibe analogues we could demonstrate that binding of cholesterol absorption inhibitors to the brush border membrane of small intestinal enterocytes from the gut lumen is sufficient for inhibition of cholesterol absorption. A 145-kDa integral membrane protein was identified as the molecular target for cholesterol absorption inhibitors in the enterocyte brush border membrane by photoaffinity labeling with photoreactive Ezetimibe analogues (Kramer, W., Glombik, H., Petry, S., Heuer, H., Schafer, H. L., Wendler, W., Corsiero, D., Girbig, F., and Weyland, C. (2000) FEBS Lett. 487, 293-297). The 145-kDa Ezetimibe-binding protein was purified by three different methods and sequencing revealed its identity with the membrane-bound ectoenzyme aminopeptidase N ((alanyl)aminopeptidase; EC 3.4.11.2; APN; leukemia antigen CD13). The enzymatic activity of APN was not influenced by Ezetimibe (analogues). The uptake of cholesterol delivered by mixed micelles by confluent CaCo-2 cells was partially inhibited by Ezetimibe and nonabsorbable Ezetimibe analogues. Preincubation of confluent CaCo-2 cells with Ezetimibe led to a strong decrease of fluorescent APN staining with a monoclonal antibody in the plasma membrane. Independent on its enzymatic activity, aminopeptidase N is involved in endocytotic processes like the uptake of viruses. Our findings suggest that binding of Ezetimibe to APN from the lumen of the small intestine blocks endocytosis of cholesterol-rich membrane microdomains, thereby limiting intestinal cholesterol absorption.  相似文献   

17.
This study was conducted to characterize enterocyte apical membrane-bound alkaline phosphatase activity in different segments of the porcine small intestine. Duodenal, jejunal, and distal ileal segments were isolated from three 26-kg pigs and enterocyte brush border membrane, enriched between 19- and 24-fold in sucrase specific activity, was prepared by Mg(2+) precipitation and differential centrifugation. With P-nitrophenyl phosphate as substrate, the optimum pH for porcine brush border membrane-bound alkaline phosphatase activity was defined to be 10.5 for all three segments. At the optimal pH, the kinetics of membrane-bound alkaline phosphatase were determined for the three intestinal segments. The affinity of this enzyme (K(m), mM) in the jejunum (0.64 +/- 0.07) was four times greater than that in the duodenum (2.75 +/- 0.59) and the distal ileum (2.71 +/- 1.14). These results indicate that different isomers of membrane-bound alkaline phosphatase might have been expressed in different segments of porcine small intestine. The maximal specific activity (V(max), micromol/mg protein . min) of this enzyme was highest in the duodenal (7.74 +/- 0.95), intermediate in the jejunal (4.31 +/- 0.18), and lowest in the distal ileal (3.53 +/- 0.84) brush border membrane. Therefore, the maximal specific activity of brush border membrane-bound alkaline phosphatase along the intestinal longitudinal axis in growing pigs decreases from the duodenum toward the distal ileum.  相似文献   

18.
The characteristics of nicotinamide adenine dinucleotide (NAD) binding on brush border membranes prepared from rat renal cortex were investigated with the use of radioactively labelled NAD, [adenine-2,8-3H]NAD+, as a ligand. (1) We found that NAD binds on brush border membrane and that the extent of NAD binding is linearly proportional to the brush border membrane protein, and progressively increases with concentration of NAD in the medium. (2) The rate of NAD binding was dependent on temperature. At 20 degrees C, the equilibrium binding was obtained at 15 min, while NAD binding at 0 degree C was slower, but the final level of binding reached at 120 min was similar to that plateau of binding observed at 20 degrees C. Brush border membrane inactivated by heating at 95 degrees C for 3 min did not bind NAD. Binding of NAD on brush border membranes was reversed by simple dilution or by the addition of unlabelled NAD. Both alpha-NAD and beta-NAD stereoisomers displaced bound [3H]NAD. Reduced NAD (NADH) caused less displacement of bound NAD than oxidized NAD+. Adenine, nicotinamide, pyrophosphate, of 5'-AMP did not displace bound NAD. (3) The NAD binding to brush border membranes was nearly saturable, approximating saturation at 10(-4) M NAD. Kinetic analysis by Scatchard plot indicates two sets of NAD binding sites in brush border membranes: a high-affinity binding site (Kd = 1.9 . 10(-5) M) and a low-affinity binding site (Kd = 2.2 . 10(-3) M). (4) Unlike concentrative uptake of D-[14C]glucose by brush border membrane vesicles, binding of NAD was not dependent on the presence of an outside-in sodium gradient [Na+0 greater than Na+i], nor was it abolished by repeated freezing and thawing of brush border membranes. Unlike D-[14C]glucose uptake, NAD binding by brush border membranes did not change upon decrease of intravesicular volume in hypertonic media. These observations indicate that NAD association with brush border membranes is true binding rather than intravesicular uptake of this compound. (5) The presence of specific binding sites in renal brush border membrane capable of binding of NAD with a high degree of affinity suggests that such sites may be involved in previously observed (Kempson, S.A., Colon-Otero, G., Ou, S.L., Turner, S.T. and Dousa, T.P. (1981) J. Clin. Invest. 67, 1347) modulatory effect of NAD on sodium-gradient-dependent uptake of phosphate across luminal brush border membrane of proximal tubules.  相似文献   

19.
Isolated human intestinal brush border membranes were used as sources of enzyme to study their degradation by proteolytic enzymes. Human intestinal brush border hydrolases undergo degradation by two separate proteolytic systems. Sucrase and alkaline phosphatase are degraded by pancreatic proteases (e.g. chymotrypsin) at neutral pH, whereas trehalase is degraded by lysosomal extracts at acid pH. Both the membrane bound and membrane free isolated enzymes had similar sensitivity to proteolytic enzymes. Thus, initial removal from the membrane is not essential as a prerequisite to proteolysis. It is postulated that the brush border membrane of the intestine is subject to proteolysis by pancreatic enzymes from the external cell surface and by lysosomal proteases within the cell.  相似文献   

20.
The uptake of beta-lactam antibiotics into small intestinal enterocytes occurs by the transport system for small peptides. The role of membrane-bound peptidases in the brush border membrane of enterocytes from rabbit and pig small intestine for the uptake of small peptides and beta-lactam antibiotics was investigated using brush border membrane vesicles. The enzymatic activity of aminopeptidase N was inhibited by beta-lactam antibiotics in a non-competitive manner whereas dipeptidylpeptidase IV was not affected. The peptidase inhibitor bestatin led to a strong competitive inhibition of aminopeptidase N whereas the uptake of cephalexin into brush border membrane vesicles was only slightly inhibited at high bestatin concentrations (greater than 1 mM). Modification of brush border membrane vesicles with the histidine-modifying reagent diethyl pyrocarbonate led to a strong irreversible inhibition of cephalexin uptake whereas the activity of aminopeptidase N remained unchanged. A modification of serine residues with diisopropyl fluorophosphate completely inactivated dipeptidylpeptidase IV whereas the transport activity for cephalexin and the enzymatic activity of aminopeptidase N were not influenced. With polyclonal antibodies raised against aminopeptidase N from pig renal microsomes the aminopeptidase N from solubilized brush border membranes from pig small intestine could be completely precipitated; the binding protein for beta-lactam antibiotics and oligopeptides of apparent Mr 127,000 identified by direct photoaffinity labeling with [3H]benzylpenicillin showed no crossreactivity with the aminopeptidase N anti serum and was not precipitated by the anti serum. These results clearly demonstrate that peptidases of the brush border membrane like aminopeptidase N and dipeptidylpeptidase IV are not directly involved in the intestinal uptake process for small peptides and beta-lactam antibiotics and are not a constituent of this transport system. This suggests that a membrane protein of Mr 127,000 is (a part of) the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of small intestinal enterocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号