首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokines and bullous pemphigoid.   总被引:2,自引:0,他引:2  
This report reviews the data presented in the literature concerning the presence and levels of different cytokines in sera, lesional tissue or blister fluids of patients with bullous pemphigoid. The list of cytokines analysed includes 21 molecules: interleukins (IL)-1 => 8, IL-10 => 13, IL-15, granulocyte-monocyte-colony stimulating factor (GM-CSF), interferon-gamma (IFN-gamma), oncostatin-M (OSM), regulated upon activation normal T cell expressed and presumably secreted (RANTES), transforming growth factor-beta 1 (TGF-beta 1), tumor necrosis factor-alpha (TNF-alpha) and vascular endothelial growth factor (VEGF). Basic information regarding the functions of these cytokines and their possible involvement in the pathogenetic steps of the disease, such as autoantigen expression, autoantibody induction, complement activation, local cell recruitment and stimulation, resident cell activation, release of various effector molecules and tissue damage are also reported. A specific function for each cytokine in bullous pemphigoid induction cannot be still defined, however, the literature attributes a major role to IL-1, IL-4, IL-5, IL-6, IL-8 and IFN-gamma. On the basis of significant (direct or inverse) correlations found between disease intensity and the blister fluid/serum levels, the following cytokines IL-7, IL-15, RANTES, VEGF and TNF-alpha, besides those previously mentioned, may also be involved in this disease.  相似文献   

2.
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by excessive accumulation of the amyloid-β peptide (Aβ) in the brain, which has been considered to mediate the neuroinflammation process. Microglial activation is the main component of neuroimmunoregulation. In recent years, exosomes isolated from human umbilical cord mesenchymal stem cells (hucMSC-exosomes) have been demonstrated to mimic the therapeutic effects of hucMSCs in many inflammation-related diseases. In this study, exosomes from the supernatant of hucMSCs were injected into AD mouse models. We observed that hucMSC-exosomes injection could repair cognitive disfunctions and help to clear Aβ deposition in these mice. Moreover, we found that hucMSC-exosomes injection could modulate the activation of microglia in brains of the mice to alleviated neuroinflammation. The levels of pro-inflammatory cytokines in peripheral blood and brains of mice were increased and the levels of anti-inflammatory cytokines were decreased. We also treated BV2 cells with hucMSC-exosomes in culture medium. HucMSC-exosomes also had inflammatory regulating effects to alternatively activate microglia and modulate the levels of inflammatory cytokines in vitro.  相似文献   

3.
4.
The cellular and extracellular matrix accumulations that comprise the lesions of atherosclerosis are driven by local release of cytokines at sites of predilection for lesion formation, and by the specific attraction and activation of cells expressing receptors for these cytokines. Although cytokines were originally characterized for their potent effects on immune and inflammatory cells, they also promote endothelial cell dysfunction and alter smooth muscle cell (SMC) phenotype and function, which can contribute to or retard vascular pathologies. This review summarizes in vivo studies that have characterized endothelial- and smooth muscle-specific effects of altering cytokine signaling in vascular disease. Although multiple reports have identified cytokines as pivotal players in endothelial and SMC responses in vascular disease, they also have highlighted the need to delineate the critical genes and specific cellular functions regulated by individual cytokine signaling pathways.  相似文献   

5.
BALB/c IL-2-deficient (IL-2-KO) mice develop systemic autoimmunity, dying within 3 to 5 wk from complications of autoimmune hemolytic anemia. Disease in these mice is Th1 mediated, and IFN-γ production is required for early autoimmunity. In this study, we show that dendritic cells (DCs) are required for optimal IFN-γ production by T cells in the IL-2-KO mouse. Disease is marked by DC accumulation, activation, and elevated production of Th1-inducing cytokines. IL-2-KO DCs induce heightened proliferation and cytokine production by naive T cells compared with wild-type DCs. The depletion of either conventional or plasmacytoid DCs significantly prolongs the survival of IL-2-KO mice, demonstrating that DCs contribute to the progression of autoimmunity. Elimination of Th1-inducing cytokine signals (type 1 IFN and IL-12) reduces RBC-specific Ab production and augments survival, indicating that cytokines derived from both plasmacytoid DCs and conventional DCs contribute to disease severity. DC activation likely precedes T cell activation because DCs are functionally activated even in an environment lacking overt T cell activation. These data indicate that both conventional and plasmacytoid DCs are critical regulators in the development of this systemic Ab-mediated autoimmune disease, in large part through the production of IL-12 and type 1 IFNs.  相似文献   

6.
Minocycline inhibits LPS-induced retinal microglia activation   总被引:3,自引:0,他引:3  
  相似文献   

7.
Activation and regulation of Toll-like receptors 2 and 1 in human leprosy   总被引:16,自引:0,他引:16  
The expression and activation of Toll-like receptors (TLRs) was investigated in leprosy, a spectral disease in which clinical manifestations correlate with the type of immune response mounted toward Mycobacterium leprae. TLR2-TLR1 heterodimers mediated cell activation by killed M. leprae, indicating the presence of triacylated lipoproteins. A genome-wide scan of M. leprae detected 31 putative lipoproteins. Synthetic lipopeptides representing the 19-kD and 33-kD lipoproteins activated both monocytes and dendritic cells. Activation was enhanced by type-1 cytokines and inhibited by type-2 cytokines. In addition, interferon (IFN)-gamma and granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced TLR1 expression in monocytes and dendritic cells, respectively, whereas IL-4 downregulated TLR2 expression. TLR2 and TLR1 were more strongly expressed in lesions from the localized tuberculoid form (T-lep) as compared with the disseminated lepromatous form (L-lep) of the disease. These data provide evidence that regulated expression and activation of TLRs at the site of disease contribute to the host defense against microbial pathogens.  相似文献   

8.
9.
10.
Dendritic cells and cytokines in human inflammatory and autoimmune diseases   总被引:4,自引:0,他引:4  
Dendritic cells (DCs) produce cytokines and are susceptible to cytokine-mediated activation. Thus, interaction of resting immature DCs with TLR ligands, for example nucleic acids, or with microbes leads to a cascade of pro-inflammatory cytokines and skewing of T cell responses. Conversely, several cytokines are able to trigger DC activation (maturation) via autocrine, for example TNF and plasmacytoid DCs, and paracrine, for example type I IFN and myeloid DCs, pathways. By controlling DC activation, cytokines regulate immune homeostasis and the balance between tolerance and immunity. The increased production and/or bioavailability of cytokines and associated alterations in DC homeostasis have been implicated in various human inflammatory and autoimmune diseases. Targeting these cytokines with biological agents as already is the case with TNF and IL-1 represents a success of immunology and the coming years will expand the range of cytokines as therapeutic targets in autoinflammatory and autoimmune pathology.  相似文献   

11.
Immunomodulatory functions of type I interferons   总被引:1,自引:0,他引:1  
Interferon-α (IFNα) and IFNβ, collectively known as type I IFNs, are the major effector cytokines of the host immune response against viral infections. However, the production of type I IFNs is also induced in response to bacterial ligands of innate immune receptors and/or bacterial infections, indicating a broader physiological role for these cytokines in host defence and homeostasis than was originally assumed. The main focus of this Review is the underappreciated immunomodulatory functions of type I IFNs in health and disease. We discuss their function in the regulation of innate and adaptive immune responses, the response to bacterial ligands, inflammasome activation, intestinal homeostasis and inflammatory and autoimmune diseases.  相似文献   

12.
13.
CD4(+) T cells play a key role in granulomatous inflammation in the lung of patients with chronic beryllium disease. The goal of this study was to characterize activation pathways of beryllium-responsive bronchoalveolar lavage (BAL) CD4(+) T cells from chronic beryllium disease patients to identify possible therapeutic interventional strategies. Our results demonstrate that in the presence of APCs, beryllium induced strong proliferation responses of BAL CD4(+) T cells, production of superoptimal concentrations of secreted proinflammatory cytokines, IFN-gamma, TNF-alpha,and IL-2, and up-regulation of numerous T cell surface markers that would promote T-T Ag presentation. Ab blocking experiments revealed that anti-HLA-DP or anti-LFA-1 Ab strongly reduced proliferation responses and cytokine secretion by BAL CD4(+) T cells. In contrast, anti-HLA-DR or anti-OX40 ligand Ab mainly affected beryllium-induced proliferation responses with little impact on cytokines other than IL-2, thus implying that nonproliferating BAL CD4(+) T cells may still contribute to inflammation. Blockade with CTLA4-Ig had a minimal effect on proliferation and cytokine responses, confirming that activation was independent of B7/CD28 costimulation. These results indicate a prominent role for HLA-DP and LFA-1 in BAL CD4(+) T cell activation and further suggest that specific Abs to these molecules could serve as a possible therapy for chronic beryllium disease.  相似文献   

14.
African trypanosomes are extracellular parasites causing sleeping sickness to human or nagana to livestock in sub-Saharan Africa. To gain insight into factors governing resistance/susceptibility to these parasites, the immune responses in mice infected with a Trypanosoma brucei phospholipase C null mutant (PLC(-/-)) or its wild type counterpart (WT) were compared. We found that the T. b. brucei mutant inducing a chronic infection triggers the production of type I cytokines during the early stage of infection, followed by the secretion of type II cytokines in the late/chronic phase of the disease. In contrast, WT-infected mice are killed within 5 weeks and remain locked in a type I cytokine response. The type I/type II cytokine balance may influence the development of different subsets of suppressive macrophages, i.e. classically activated macrophages (type I) versus alternatively activated macrophages (type II) that are antagonistically regulated. Therefore, the phenotype and accessory cell function of macrophages elicited during WT and PLC(-/-) T. b. brucei infections were addressed. Results indicate that classically activated macrophages develop in a type I cytokine environment in the early phase of both WT and PLC(-/-) trypanosome infections. In the late stage of infection, only PLC(-/-)-infected mice resisting the infection develop type II cytokine-associated alternative macrophages. In parallel, we found that mice susceptible to Trypanosoma congolense infection, showing an exponential parasite growth until they die, have a higher level of type II cytokines in the early stage of infection than resistant animals controlling the first peak of parasitaemia. The levels of type I cytokines were comparable in both T. congolense-resistant and -susceptible mice. On the basis of these results, we propose that survival to African trypanosome infection requires a type I cytokine environment and classical macrophage activation in the early stage of infection, enabling mice to control the first peak of parasitaemia. Thereafter, a switch to type II cytokine environment triggering alternative macrophage activation is required to enable progression of the disease into the chronic phase. The possible role of the sequential activation of alternative macrophages in the late/chronic stage of infection in the increased resistance of mice to PLC(-/-) T. b. brucei will be discussed.  相似文献   

15.
The TNF family cytokines BAFF (B-cell activating factor of the TNF family) and APRIL (a proliferation-inducing ligand) are crucial survival factors for B-cell development and activation. B-cell directed treatments have been shown to improve atopic eczema (AE), suggesting the involvement of these cytokines in the pathogenesis of AE. We therefore analyzed the expression of these TNF cytokines in AE, seborrheic eczema (SE) and healthy controls (HC). The serum/plasma concentration of BAFF, APRIL and a close TNF member TWEAK (TNF-like weak inducer of apoptosis) was measured by ELISA. The expression of these cytokines and their receptors in skin was analyzed by quantitative RT-PCR and immunofluorescence. Unlike other inflammatory diseases including autoimmune diseases and asthma, the circulating levels of BAFF, APRIL and TWEAK were not elevated in AE or SE patients compared with HCs and did not correlate with the disease severity or systemic IgE levels in AE patients. Interestingly, we found that the expression of these cytokines and their receptors was altered in positive atopy patch test reactions in AE patients (APT-AE) and in lesional skin of AE and SE patients. The expression of APRIL was decreased and the expression of BAFF was increased in eczema skin of AE and SE, which could contribute to a reduced negative regulatory input on B-cells. This was found to be more pronounced in APT-AE, the initiating acute stage of AE, which may result in dysregulation of over-activated B-cells. Furthermore, the expression levels of TWEAK and its receptor positively correlated to each other in SE lesions, but inversely correlated in AE lesions. These results shed light on potential pathogenic roles of these TNF factors in AE and SE, and pinpoint a potential of tailored treatments towards these factors in AE and SE.  相似文献   

16.
The mechanism by which the fibroblast is able to trigger palmar fibromatosis is still not yet fully understood. It would appear certain that the “abnormal” fibroblasts continuously synthesise profibrotic cytokines which are able to determine the activation to myofibroblasts, to stimulate them to the further proliferation and synthesis of other cytokines, to modify the cells’ differentiation and ultrastructural characteristics, as well as the production of matrix and other proteins. Several fibroblast growth factors have been suggested to be responsible of an abnormal cell activation with an aberrantly elevated collagen synthesis and extracellular deposition in Dupuytren’s disease, as TGF-Beta, TNF-Alfa, PDGF, GM-CSF, free radicals, metalloproteinases, sex hormones, gene modified expression, mechanical stimulation. The Authors review the current state of knowledge in the field, by analyzing the role of these cytokines in the palmar fibromatosis.  相似文献   

17.
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Although its pathogenesis is still unclear, increasing evidence suggests that mitochondrial dysfunction induced by environmental toxins, such as mitochondrial complex I inhibitors, plays a significant role in the disease process. The microglia in PD brains are highly activated, and inflammation is also an essential element in PD pathogenesis. However, the means by which these toxins activate microglia is still unclear. In the present study, we found that rotenone, a mitochondrial complex I inhibitor, could directly activate microglia via the nuclear factor kappa B (NF-κB) signaling pathway, thereby inducing significantly increased expression of inflammatory cytokines. We further observed that rotenone induced caspase-1 activation and mature IL-1β release, both of which are strictly dependent on p38 mitogen-activated protein kinase (MAPK). The activation of p38 is associated with the presence of reactive oxygen species (ROS) produced by rotenone. Removal of these ROS abrogated the activation of the microglia. Therefore, our data suggest that the environmental toxin rotenone can directly activate microglia through the p38 MAPK pathway.  相似文献   

18.
Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylcer‐amide macrophages, the accumulation of glucosylceramide in lysosomes and the secretion of inflammatory cytokines. However, the connection between this lysosomal storage and inflammation is not clear. Studying macrophages derived from peripheral monocytes from patients with type 1 Gaucher disease with genotype N370S/N370S, we confirmed an increased secretion of interleukins IL‐1β and IL‐6. In addition, we found that activation of the inflammasome, a multiprotein complex that activates caspase‐1, led to the maturation of IL‐1β in Gaucher macrophages. We show that inflammasome activation in these cells is the result of impaired autophagy. Treatment with the small‐molecule glucocerebrosidase chaperone NCGC758 reversed these defects, inducing autophagy and reducing IL‐1β secretion, confirming the role of the deficiency of lysosomal glucocerebrosidase in these processes. We found that in Gaucher macrophages elevated levels of the autophagic adaptor p62 prevented the delivery of inflammasomes to autophagosomes. This increase in p62 led to activation of p65‐NF‐kB in the nucleus, promoting the expression of inflammatory cytokines and the secretion of IL‐1β. This newly elucidated mechanism ties lysosomal dysfunction to inflammasome activation, and may contribute to the massive organomegaly, bone involvement and increased susceptibility to certain malignancies seen in Gaucher disease. Moreover, this link between lysosomal storage, impaired autophagy, and inflammation may have implications relevant to both Parkinson disease and the aging process. Defects in these basic cellular processes may also provide new therapeutic targets.  相似文献   

19.
Crohn’s disease (CD) is one of the two major types of inflammatory bowel disease (IBD) thought to be caused by genetic and environmental factors. Recently, miR-122 was found to be deregulated in association with CD progression. However, the underlying molecular mechanisms remain unclear. In the present study, the gene nucleotide-binding oligomerization domain 2 (NOD2/CARD15), which is strongly associated with susceptibility to CD, was identified as a functional target of miR-122. MiR-122 inhibited LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. NOD2 interaction with LPS initiates signal transduction mechanisms resulting in the activation of nuclear factor κB (NF-κB) and the stimulation of downstream pro-inflammatory events. The activation of NF-κB was inhibited in LPS-stimulated HT-29 cells pretreated with miR-122 precursor or NOD2 shRNA. The expression of the pro-inflammatory cytokines TNF-α and IFN-γ was significantly decreased, whereas therelease of the anti-inflammatory cytokines IL-4 and IL-10 was increased in LPS-stimulated HT-29 cells pretreated with miR-122 precursor, NOD2 shRNA or the NF-κB inhibitor QNZ. Taken together, these results indicate that miR-122 and its target gene NOD2 may play an important role in the injury of intestinal epithelial cells induced by LPS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号