首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutritional factors controlling derepression of nitrogenase activity in Parasponia-Rhizobium strain ANU 289 were studied in stationary and agitated liquid cultures. Altering type and/or concentrations of the constituents of the derepression medium in respect of carbon and nitrogen sources influenced both derepression kinetics as well as the maximal level of activity. Hexose sugars and disaccharides stimulated nitrogenase activity three to six-fold compared to pentose sugars. Activity was also modulated by combining sugars with some organic acids such as succinate, fumarate and pyruvate but not with others (e.g. -ketoglutarate, malate, malonate). Of the range of nitrogen sources tested, either casamino acids (at 0.05%, but not at 0.1%), glutamate, proline or to a lesser extent histidine (each at 5 mM N) supported significant derepression of nitrogenase activity. Notably glutamine, urea, alanine, ammonium sulfate, nitrate, nitrite (each at 5 mM N) and yeast extract (0.05%) failed to derepress or support nitrogenase activity. Ammonium (5 mM) abolished established nitrogenase activity of rapidly agitated cultures within 15 h after addition. This inhibitory effect was alleviated by the addition of methionine sulfoximime (10 mM). Thus, in view of strong glutamine effects, ammonium repression appears to be mediated by glutamine and not by ammonium itself.Abbreviations HEPES [4-(2-hydroxyethyl)-1-piperazine-ethane; sulfonic acid] - MOPS [3-(N-morpholino) propane sulphonic acid] - MSX Methionine sulfoximine  相似文献   

2.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

3.
Specific nitrogenase activity inAzospirillum brasilense ATCC 29145 in surface cultures under air is enhanced from about 50 nmol C2H4·mg protein-1·h-1 to 400 nmol C2H4 by the addition of 1 mM phenol. 0.5 and 2 mM phenol added increase the rate 5-fold and 4-fold. This enhancement effect is observed only between 2 and 3 days after inoculation, with only a small reduction of the growth of the cells by the phenol added. In surface cultures under 1% O2, nitrogenase activity is slightly reduced by the addition of 1–0.01 mM phenol. Utilization of succinate is enhanced during the period of maximum enhancement of nitrogenase activity by 60% by addition of 1 mM phenol. The cells did not produce14CO2 from [U-14C] phenol, neither in surface cultures nor in liquid cultures and less than 0.1% of the phenol was incorporated into the cells. A smaller but significant enhancement of nitrogenase activity by about 100% in surface cultures under air was found withKlebsiella pneumoniae K 11 after addition of 1 mM phenol. However, inRhizobium japonicum 61-A-101 all phenol concentrations above 0.01 mM reduced nitrogenase activity. With 1 mM phenol added activity was reduced to less than 10% with no effect on the growth in the same cultivation system. With thisRhizobium japonicum strain significant quantities of phenol (25 mol in 24 h by 2·1012 cells) were metabolized to14CO2, with phenol as sole carbon source. WithAzospirillum brasilense in liquid culture under 1% and 2% O2 in the gas phase, no enhancement of nitrogenase activity by phenol was noticed.  相似文献   

4.
Summary Anabaena flos-aquae is grown in chemostats under phosphate and urea-limited conditions. Nitrogenase activity in phosphate-limited cells has a maximum activity at a dilution rate of 0.025 h-1 and is repressed 24-fold by 15 mM KNO3. Cultures growing on 1.5 mM nitrate obtain 1/2–2/3 of cell nitrogen from N2. Cells form inducible nitrite assimilating enzymes when grown on nitrate. Algae growing under A or He on limiting urea or phosphate-limited with nitrate have active nitrogenase. The ratio of nitrogenase activity to heterocyst numbers varied 90-fold depending on source of nitrogen, 15 mM KNO3 gave the smallest ratio. The regulatory mechanisms controlling the activity of nitrogenase in blue-green algae is discussed.  相似文献   

5.
Spermine, spermidine and putrescine produce dose dependent stimulation of the invitro tubulinyl-tyrosine carboxypeptidase. Maximal stimulation was obtained with spermine, spermidine or putrescine at 0.06 mM, 1 mM and 6 mM, respectively. At higher concentrations, the enzyme activity was inhibited. The enzyme was also activated by Mg++; the concentration formaximal effect was 4–6 mM. The stimulation produced by optimal concentration of each amine was unaffected by Mg++ up to 2 mM; higher concentration of Mg++ showed inhibitory effect. At optimal Mg++ concentration, the carboxypeptidase activity was inhibited by increasing amine concentration. The amines at 0.5 or 5 mM did not produce any effect on the incorporation of tyrosine catalyzed by tubulin tyrosine ligase.  相似文献   

6.
Summary An independent strain ofAnabaena azollae was evaluated for its potential as a biofertilizer in wetland rice fields. Sustained rapid growth (doubling time=10.5 h) and nitrogenase activity (32 nmol C2H4 h–1 g–1 chl) was recorded. Mass cultivation (up to 300 litres) for the first time with this species was also achieved.  相似文献   

7.
Under diurnal 16/8-h light-dark cycles, ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) at 1 mM completely blocked the appearance of rhythmic N2-fixing activity in Synechococcus RF-1. Ca2+ at 2 mM, when supplied either together with or several hours after the EGTA application, restored the nitrogenase activity, whereas, when Ca2+ was supplied several hours later, the peak of nitrogenase activity was shifted from the dark to the light period in which the activity is normally suppressed. Sr2+ also reversed the inhibition by EGTA, but only partially. When O2 in the gas phase above the culture was below 1%, the inhibition of nitrogenase activity by EGTA was reduced to less than 20% of the control value without EGTA. Thus Ca2+ appears to be required by the cell to protect its nitrogenase from inactivation by O2. In media without EGTA, a close correlation between nitrogenase activity and concentrations of Ca2+ was also observed.Abbreviation EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid  相似文献   

8.
Adenylylation of glutamine synthetase was suppressed during derepression of nitrogenase synthesis in the presence of methionine sulfone and an excess of NH4+. Deadenylylation of glutamine synthetase was also promoted during nitrogenase derepression under the same conditions. These results are consistent with the hypothesis that the unadenylylated form of glutamine synthetase is required for derepression of nitrogenase.  相似文献   

9.
Succinate-limited continuous cultures of an Azorhizobium caulinodans strain were grown on ammonia or nitrogen gas as a nitrogen source. Ammonia-grown cells became oxygen limited at 1.7 μM dissolved oxygen, whereas nitrogen-fixing cells remained succinate limited even at dissolved oxygen concentrations as low as 0.9 μM. Nitrogen-fixing cells tolerated dissolved oxygen concentrations as high as 41 μM. Succinate-dependent oxygen uptake rates of cells from the different steady states ranged from 178 to 236 nmol min−1 mg of protein−1 and were not affected by varying chemostat-dissolved oxygen concentration or nitrogen source. When equimolar concentrations of succinate and β-hydroxybutyrate were combined, oxygen uptake rates were greater than when either substrate was used alone. Azide could also used alone as a respiratory substrate regardless of nitrogen source; however, when azide was added following succinate additions, oxygen uptake was inhibited in ammonia-grown cells and stimulated in nitrogen-fixing cells. Use of 25 mM succinate in the chemostat resevoir at a dilution rate of 0.1 h−1 resulted in high levels of background respiration and nitrogenase activity, indicating that the cells were not energy limited. Lowering the reservoir succinate to 5 mM imposed energy limitation. Maximum succinate-dependent nitrogenase activity was 1,741 nmol of C2H4h−1 mg (dry weight)−1, and maximum hydrogen-dependent nitrogenase activity was 949 nmol of C2H4 h−1 mg (dry weight)−1. However, when concentration of 5% (vol/vol) hydrogen or greater were combined with succinate, nitrogenase activity decreased by 35% in comparison to when succinate was used alone. Substitution of argon for nitrogen in the chemostat inflow gas resulted in “washout,” proving that ORS571 can grow on N2 and that there was not a nitrogen source in the medium that could substitute.  相似文献   

10.
Nitrogenase activity and the rate of photosynthesis were measured simultaneously in Azolla by a continuous gas flow system. The mode of interaction between light, photosynthesis and nitrogenase activity was analysed.Nitrogenase activity dropped off when either Azolla plants or the cyanobiont Anabaena were transferred from light to dark. This decline was immediate and was independent of length or intensity of the prior light phase. Reillumination restored nitrogenase activity.Nitrogenase activity did not depend on the rate of photosynthesis at light intensities below 10 μE m−2 s−1. Its activity was saturated at 200 μE m−2 s−1 while CO2 fixation was saturated at a light intensity of 850 μE m−2 s−1. Azolla photosynthetic activity followed the absorption spectrum of chlorophyll a, while nitrogenase activity markedly increased between 690 and 710 nm. Inhibition of photosynthesis by DCMU was accompanied by an increase in nitrogenase activity. These results suggest direct light regulation of nitrogenase activity in Azolla independent of CO2 fixation, and a possible inhibition of nitrogenase activity by the oxygen produced in photosynthesis.  相似文献   

11.
Summary Deficiency of inorganic phosphate caused the hyper production of invertase and the derepression of acid phosphatase in a continuous culture ofSaccharomyces carlsbergensis. The specific invertase activity was 40,000 enzyme units per g dry cell weight at a dilution rate lower than 0.05 h–1 with a synthetic glucose medium of which the molecular ratio of KH2PO4 to glucose was less than 0.006. This activity is eight fold higher than in a batch growth and 1.5 fold as much as the highest enzyme activity observed so far in a glucose-limited continuous culture.For the hyper production of invertase, it is necessary to culture the yeast continuously by keeping the Nyholm's conservative inorganic phosphate concentration at less than 0.2 m mole per g dry weight cell. The derepression of acid phosphatase brought about by phosphate deficiency, was similar in both batch and continuous cultures.Nomenclature D dilution rate of continuous culture (h–1) - Ei invertase concentration in culture (enzyme unit l–1) - Ep acid phosphatase concentration in culture (enzyme unit l–1) - P inorganic phosphate concentration in culture (mM) - S glucose concentration in culture (mM) - X cell concentration in culture (g dry weight cell l–1) Greek Letter specific rate of growth (h–1) Suffix f feed - 0 initial value  相似文献   

12.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH4+ is in equilibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic activity of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in γ-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of γ-glutamyl transferase activities without and with addition of 60 mM Mg2+.Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH4+, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH4+ produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

13.
Long lasting batch cultures of Azospirillum brasilense SP 7 ATCC 29145 grown in liquid malate medium for 8–14 days without any fixed nitrogen source exhibited a biphasic nitrogenase activity, when incubated under gas atmospheres of 99.0% N2 and 1.0% O2 or 99.5% N2 and 0.5% O2 respectively. Maximum specific nitrogenase activity was 1100 nmol C2H4·mg protein-1·h-1. Poly-3-hydroxybutanoic acid (PHBA) synthesis and growth of the cells also showed two phases. Maxima and minima of glutamine synthetase activity developed synchronously with nitrogenase activity, whereas those of glutamate dehydrogenase and alanine aminotransferase were reverse. During a 192 h period of growth protein increased 3–4-fold and PHBA 25 fold. At maximum accumulation of the polymer the PHBA-nitrogen ratio was 6:1 or 8:1. Azospirillum brasilense was also able to fix nitrogen on agar surfaces exposed to air, but nitrogen fixation was monophasic under these conditions during a 14 d period. Specific nitrogenase activity was dependent on the type and concentration of the source of fixed nitrogen (leucine, ammonia) in solidified media. With 1 mM leucine maximum specific nitrogenase activity was 110 nmol C2H4·mg protein-1·h-1.Non-Standard Abbreviations PHBA poly-3-hydroxybutanoic acid - TAPS tris(hydroxymethyl)methylaminopropane sulfonic acid - TES N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid - TRICINE N-tris(hydroxymethyl)methylglycine - TRIS tris(hydroxymethyl)aminomethane  相似文献   

14.
Summary The kinetics of derepression of the enzyme nitrogenase were investigated, after exhaustion of a limiting amount of ammonium from the culture medium, in a prototrophic stringent-relaxed pair of Klebsiella pneumoniae strains and in their F relA +-F relA derivatives. The results indicate that ppGpp (guanosine 3–5 diphosphate) increases the nitrogen fixation capability of K. pneumoniae by at least three different mechanisms. (1) It prevents exhaustion of the ATP pool when nitrogen starvation is imposed. (2) The translational defects in relaxed mutants are suppressed by ppGpp during nif derepression. (3) The synthesis of nitrogenase components is at least five times higher in the presence of ppGpp than in its absence. This latter conclusion was based on experimental results obtained when following the incorporation of (35S)-methionine into nitrogenase components after pulse labelling at various time intervals during nif derepression. The nitrogenase components were separated by solid phase radioimmunoassay as well as by two-dimensional gel electrophoresis.  相似文献   

15.
《BBA》1985,808(1):149-155
In cells of Rhodopseudomonas capsulata growing in nitrogen-limited continuous culture the nitrogenase-specific activity was found to be closely dependent on the light intensity. As light intensity, measured with a photodiode immersed in the culture, was varied stepwise from 1000 to 7000 lux, the nitrogenase activity, measured at steady state, increased gradually up to 5-fold. Shifting light intensity from 1200 to 7000 lux resulted in a sharp rise in nitrogenase activity which doubled within the first two hours. The determination by immunoassays of the intracellular levels of each nitrogenase component revealed that the light-dependent stimulation of nitrogenase activity was correlated with the accumulation of the nitrogenase enzyme inside the cells. Under high illumination, nitrogenase represented up to 40% of the cytoplasmic proteins. The specific activities of each component in intact cells, calculated on the basis of their relative concentration in the cells and on in vivo nitrogenase assays, appeared roughly constant and hardly affected by changes of light intensity. The specific activity of the Fe protein was about 7-fold higher in intact cells than in the purified state. The ratio of the two nitrogenase components remained fairly constant and close to one, irrespective of the light intensity to which cells were exposed. These results demonstrate that in nitrogen-limited grown cells of Rps. capsulata light brings about an induction or a derepression of nitrogenase synthesis the extent of which is dependent on light intensity.  相似文献   

16.
Summary Nitrogen fixing cultures of the cyanobacteriumNostoc muscorum lacked hydrogen evolution but cultures infected with cyanophage N-1 showed significant hydrogen evolution and inactive nitrogenase, suggesting that nitrogenase activity is not responsible for the observed oxygen-resistant photoproduction of hydrogen. Significant oxygen-resistant hydrogen production by nitrate or ammonium assimilating cultures deficient in both nitrogenase and uptake hydrogenase activity supports this conclusion. These findings suggest a role of uptake hydrogenase in blocking the production of hydrogen during aerobic photosynthetic conditions.  相似文献   

17.
Abstract

Extracellular α-galactosidase, a glycoprotein from the extracellular culture fluid of Aspergillus ficuum grown on glucose and raffinose in a batch culture system, was purified to homogeneity in five steps by inn exchange and hydrophobic Interaction chromatography. The molecular mass of the enzyme was 70.8 Kd by SDS polyacrylamide gel electrophoresis and 74.1 Kd by gel permeation HPLC. On the basis of a molecular mass of 70.7 Kd, the molar extinction coefficient of the enzyme at 279 nm was estimated to be 6.1 × 104 M?1 cm?1. The purified enzyme was remarkably stable at 0°C. It had a broad temperature optimum and maximum catalytic activity was at 60°C. It retained 33% of its activity after 10 min. at 65°C. It had a pH optimum of 6.0. It retained 62% of its activity after 12 hours at pH 2.3. The Kms for p-nitrophenyl-α-D-galactopyranoside, o-nitrophenyl-α-D-galactopyranoside and m-nitrophenyl-α-D-galactopyranoside are: 1462, 839 and 718 μ. The enzyme was competitively inhibited by mercury (19.8 μ), silver (21.5μM), copper (0.48 mM), zinc (0.11 mM), galactose (64.0 mM) and fructose (60.3 mM). It was inhibited non-competitively by glucose (83.2 mM) and uncompetitively by mannose (6.7 mM).  相似文献   

18.
Nitrogen fixation (diazotrophy) has recently been demonstrated in several methanogenic archaebacteria. To compare the process in an archaebacterium with that in eubacteria, we examined the properties of diazotrophic growth and nitrogenase activity in Methanosarcina barkeri 227. Growth yields with methanol or acetate as a growth substrate were significantly lower in N2-grown cultures than in NH4+-grown cultures, and the culture doubling times were increased, indicating that diazotrophy was energetically costly, as it is in eubacteria. Growth of nitrogen-fixing cells was inhibited when molybdenum was omitted from the medium; addition of 10 nM molybdate stimulated growth, while 1 μM molybdate restored maximum diazotrophic growth. Omission of molybdenum did not inhibit growth of ammonia-grown cells. Tungstate (100 μM) strongly inhibited growth of molybdenum-deficient diazotrophic cells, while ammonia-grown cells were unaffected. The addition of 100 nM vanadate or chromate did not stimulate diazotrophic growth of molybdenum-starved cells. These results are consistent with the presence of a molybdenum-containing nitrogenase in M. barkeri. Acetylene, the usual substrate for assaying nitrogenase activity, inhibited methanogenesis by M. barkeri and consequently needed to be used at a low partial pressure (0.3% of the headspace) when acetylene reduction by whole cells was assayed. Whole cells reduced 0.3% acetylene to ethylene at a very low rate (1 to 2 nmol h−1 mg of protein−1), and they “switched off” acetylene reduction in response to added ammonia or glutamine. Crude extracts from diazotrophic cells reduced 10% acetylene at a rate of 4 to 5 nmol of C2H4 formed h−1 mg of protein−1 when supplied with ATP and reducing power, while extracts of Klebsiella pneumoniae prepared by the same procedures had rates 100-fold higher. Acetylene reduction by extracts required ATP and was completely inhibited by 1 mM ADP in the presence of 5 mM ATP. The low rates of C2H2 reduction could be due to improper assay conditions, to switched-off enzyme, or to the nitrogenase's having lower activity towards acetylene than towards dinitrogen.  相似文献   

19.
Summary Trichoderma reesei Rut-C30 was found to produce extracellular lactase when grown on lactose medium. Maximum enzyme levels in continuous culture were observed at dilution rates (D) between 0.02 and 0.027 hr-1. The enzyme productivity reached 27.3 U/L hr at D = 0.027 hr-1. Lactase synthesis appears to be inducible and subject to catabolite repression. Optimal growth temperature and pH for enzyme production were 28°C and pH 5. Maximum enzyme activity was observed at 63°C and pH 4.6. The apparent Km, based on the nitrophenyl-galactopyranoside assay was estimated as 0.4 mM. The enzyme is suitable for lactose hydrolysis in acid whey.  相似文献   

20.
Nutritional and physical conditions affecting nitrogenase activity in the strain of cowpea rhizobia, 32H1, were examined using cultures grown on agar medium. Arabinose in the basic medium (CS7) could be replaced by ribose, xylose, or glycerol, but mannitol, glucose, sucrose, or galactose only supported low nitrogenase (C2H2 reduction) activity. Succinate could be replaced by pyruvate, fumarate, malate, or 2-oxoglutarate, but without any carboxylic acid, nitrogenase activity was low or undetectable unless a high level of arabinose was provided. Inositol was not essential. Several nitrogen sources could replace glutamine including glutamate, urea, (NH4)2SO4 and asparagine.The maximum nitrogenase activity of cultures grown in air at 30°C was observed under assay conditions of pO2=0.20–0.25 atm and 30°C incubation. Greatest activity occurred after a period of rapid bacterial growth, when viable cell count was relatively constant.Compared with results obtained on the CS7 medium, nitrogenase activity could be substantially increased and/or sustained for longer periods of time by using 12.5 mM succinate and 100 mM arabinose, by increasing phosphate concentration from 2 to 30–50 mM, or by culturing the bacteria at 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号