首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levine  M.A.  Whalen  S.C. 《Hydrobiologia》2001,455(1-3):189-201
We used 54 enrichment bioassays to assess nutrient limitation (N, P) of 14C uptake by natural phytoplankton assemblages in 39 lakes and ponds in the Arctic Foothills region of Alaska. Our purpose was to categorize phytoplankton nutrient status in this under-represented region of North America and to improve our ability to predict the response of primary production to anticipated anthropogenically mediated increases in nutrient loading. Experiments were performed across several watersheds and included assays on terminal lakes and lakes occupying various positions in chains (lakes in series within a watershed and connected by streams). In total, 89% (48 of 54) of the bioassays showed significant stimulation of 14C primary production by some form of nutrient addition relative to unamended controls. A significant response was observed following enrichment with N and P, N alone and P alone in 83, 35 and 22% of the bioassays, respectively. In experiments where N and P proved stimulatory, the influence of N alone was significantly greater than the influence of P alone. Overall, the data point to a greater importance for N than P in regulating phytoplankton production in this region. The degree of response to N and P enrichment declined as the summer progressed and showed no relationship to irradiance or water temperature, suggesting secondary limitation by some micronutrient such as iron as the summer advanced. Phytoplankton nutrient status was often consistent across lakes within a watershed, suggesting that watershed characteristics influence nutrient availability. Lakes in this region will clearly show increased phytoplankton production in response to anthropogenic activities and anticipated changes in climate that will increase nutrient loading.  相似文献   

2.
1. The biomass and production of picophytoplankton, large phytoplankton and heterotrophic bacterioplankton were measured in humic Lake Örträsket, northern Sweden during four consecutive summers.
2. High flow episodes, carrying fresh dissolved organic carbon (DOC) into the lake, always stimulated heterotrophic bacterial production at the expense of primary production. Primary production never exceeded bacterial production for approximately 20 days after such an episode had replenished epilimnial DOC. We suggest that allochthonous DOC is an energy source that stimulates bacterioplankton that, because of their efficient uptake of inorganic nutrients, are then able to outcompete phytoplankton. After the exhaustion of readily available DOC, phytoplankton were able to dominate epilimnion production in Lake Örträsket.
3. Biomass production was higher when dominated by phytoplankton than by bacterioplankton, despite a similar utilization of nutrients in the epilimnion throughout the summer. We propose that different C : N : P ratios of bacterioplankton and phytoplankton permit the latter to produce more carbon (C) biomass per unit of available inorganic nutrients than bacterioplankton.  相似文献   

3.
The influence of added nutrients nitrogen, phosphorus and carbon on the phytoplankton of a small recreational reservoir in central Arizona was investigated during the summer, 1974. Polyethylene bags were used to isolate lake water and the natural populations for the addition of nitrogen, phosphorus and carbon individually and in combination. A large increase in phytoplankton numbers, extractable chlorophyll, pH and dissolved oxygen occurred only in bags to which both nitrogen and phosphorus were added, suggesting that both nitrogen and phosphorus levels were limiting to the primary producers. Little alteration in species composition resulted from the addition of the above nutrients.  相似文献   

4.
We conducted nutrient enrichment experiments and field sampling to address three questions: (1) is there nutrient limitation of phytoplankton accumulation within an estuary whose waters are exposed to relatively high nitrogen loading rates, (2) where in the salinity gradient from fresh to seawater (0 to 32‰) is there a shift from phosphorus to nitrogen limitation of phytoplankton accumulation, and (3) is there a seasonal shift in limiting function of phosphorus and nitrogen anywhere in the estuarine gradient. Nitrogen and phosphorus enrichment experiments in the Childs River, an estuary of Waquoit Bay, Massachusetts, USA, showed that the accumulation of phytoplankton biomass in brackish and saline water was limited by supply of nitrate during warm months. The effects of enrichment were less evident in fresh water, with short-lived responses to phosphate enrichment. There was no specific point along the salinity gradient where there was a shift from phosphorus- to nitrogen-limited phytoplankton accumulation; rather, the relative importance of nitrogen and phosphorus changed along the salinity gradient in the estuary and with season of the year. There was no response to nutrient additions during the colder months, suggesting that some seasonally-varying factor, such as light, temperature or a physiological mechanism, restricted phytoplankton accumulation during months other than May-Aug. There was only slight evidence of a seasonal shift between nitrogen- and phosphorus-limitation of chlorophyll accumulation. Phytoplankton populations in nutrient-rich estuaries with short flushing times grow fast, but at the same time the cells may be advected out of the estuaries while still rapidly dividing, thereby providing an important subsidy to production in nearby deeper waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The development of eight different species (populations) along temporal and vertical gradients in several lakes was studied. Many populations had an exponential growth phase and a decline phase. The growth rate was often high during the exponential phase. Some species, e.g. Oscillatoria spp. and Synedra cf. acus, often also had a long stationary phase. The growth rate and the sinking rate of these populations were often very low. Laboratory batch experiments with dilute phytoplankton populations were carried out to estimate the degree of growth limitation (L) for different populations sample from different lakes during the three growth phases. L was always low and often zero for populations initially in the exponential phase and always high for populations initially in the decline phase. The biotests also gave results that can help to explain the vertical distribution of Oscillatoria or Asterionella in three lakes investigated. The results indicate that the growth rates and the development of the populations were dependent on the external chemical and physical conditions. The transition between the different growth phases seemed often to be dependent on the external nutrient conditions. P, N, Si and Fe were probably the most growth-limiting nutrients. The growth rate of some diatoms was probably limited directly or indirectly at high pH. Laboratory biotests with natural populations may give valuable information on the growth-properties of different populations in the lakes. The biotests should, however, be carried out in combination with chemical and physical measurements and quantitative determinations of population densities.  相似文献   

6.
SUMMARY 1. Biomass and production of picophytoplankton, phytoplankton and heterotrophic bacterioplankton were measured in seven lakes, exhibiting a broad range in water colour because of humic substances. The aim of the study was to identify environmental variables explaining the absolute and relative importance of picophytoplankton. In addition, two dystrophic lakes were fertilised with inorganic phosphorus and nitrogen, to test eventual nutrient limitation of picophytoplankton in these systems.
2. Picophytoplankton biomass and production were highest in lakes with low concentrations of dissolved organic carbon (DOC), and DOC proved the factor explaining most variation in picophytoplankton biomass and production. The relationship between picophytoplankton and lake trophy was negative, most likely because much P was bound in humic complexes. Picophytoplankton biomass decreased after the additions of P and N.
3. Compared with heterotrophic bacterioplankton, picophytoplankton were most successful at the clearwater end of the lake water colour gradient. Phytoplankton dominated over heterotrophic bacteria in the clearwater systems possibly because heterotrophic bacteria in such lakes are dependent on organic carbon produced by phytoplankton.
4. Compared with other phytoplankton, picophytoplankton did best at intermediate DOC concentrations; flagellates dominated in the humic lakes and large autotrophic phytoplankton in the clearwater lakes.
5. Picophytoplankton were not better competitors than large phytoplankton in situations when heterotrophic bacteria had access to a non-algal carbon source. Neither did their small size lead to picophytoplankton dominance over large phytoplankton in the clearwater lakes. Possible reasons include the ability of larger phytoplankton to float or swim to reduce sedimentation losses and to acquire nutrients by phagotrophy.  相似文献   

7.
We assessed the nutrient status of phytoplankton in 28 lakes in southern Chile using two types of physiological indicators: specific alkaline phosphatase activity, and the elemental composition (carbon, nitrogen, and phosphorus) of seston. Alkaline phosphatase activity ranged from 0.001 to 0.11 mol P g chl–1 h–1, with P-deficiency indicated in about one-half the study lakes. C:N ranged from 3.9 to 24, C:P ranged from 86 to 919, and N:P ranged from 8.7 to 99. C:P and N:P ratios greater than the Redfield ratio were common, suggesting P deficiency in many of the lakes. C:N ratios were not generally indicative of N deficiency. Previous studies have suggested N may be the primary limiting nutrient in southern Chilean lakes, but our results indicate that P should not be discounted as a limiting nutrient.  相似文献   

8.
A comparison of phytoplankton with bacterioplanktonproduction as each ismodified by high concentrations of suspended clays ispresented. High clayturbidity caused light-limition of water columnphytoplankton production.However, the clay combined with DOC to form aggregateswhich supportedbacterioplankton production. Consequently,bacterioplankton production wasrelatively high at 42% of total small particleproduction in this lake.Bacterioplankton abundance and biomass was stronglycorrelated withphytoplankton chlorophyll a for most of the lake. Because of the association ofbacterioplankton with the clay-organic aggregates, DOCwas not a good predictorof bacterioplankton abundance or production. POC(primarily OC associatedwith clay) was correlated with bacterioplanktonabundance over most of thelake. Bacteria production was substrate limited asshown by much greaterbiomass-specific production at smaller bacteriapopulation sizes. Multipleregression analysis showed that specificbacterioplankton production wasprimarily governed by POC and secondarily by rates ofphytoplanktonproduction. Thus clay, because of light limitedphytoplankton production,negatively impacts bacterioplankton production yet atthe same time facilitatiesbacterial production by concentrating OC with theformation of the clay-organicaggregate.  相似文献   

9.
Bukaveckas  Paul A.  Crain  Angela S. 《Hydrobiologia》2002,481(1-3):19-31
We characterize seasonal and spatial patterns in phytoplankton abundance, production and nutrient limitation in a mesotrophic river impoundment located in the southeastern United States to assess variation arising from inter-annual differences in watershed inputs. Short-term (48 h) in situ nutrient addition experiments were conducted between May and October at three sites located along the longitudinal axis of the lake. Nutrient limitation was detected in 12 of the 18 experiments conducted over 2 years. Phytoplankton responded to additions of phosphorus alone although highest chlorophyll concentrations were observed in enclosures receiving combined (P and N) additions. Growth responses were greatest at downstream sites and in late summer suggesting that those populations experience more severe nutrient limitation. Interannual variation in nutrient limitation and primary production corresponded to differences in the timing of hydrologic inputs. Above average rainfall and discharge in late-summer (July–October) of 1996 coincided with higher in-lake nutrient concentrations, increased production, and minimal nutrient limitation. During the same period in 1995, discharge was lower, nutrient concentrations were lower, and nutrient limitation of phytoplankton production was more pronounced. Our results suggest that nutrient limitation is common in this river impoundment but that modest inter-annual variability in the timing of hydrologic inputs can substantially influence seasonal and spatial patterns.  相似文献   

10.
We compiled chemical data and phytoplankton biomass (PB) data (chlorophyll a ) from unproductive lakes in 42 different regions in Europe and North America, and compared these data to inorganic nitrogen (N) deposition over these regions. We demonstrate that increased deposition of inorganic N over large areas of Europe and North America has caused elevated concentrations of inorganic N in lakes. In addition, the unproductive lakes in high N deposition areas had clearly higher PB relative to the total phosphorus (P) concentrations illustrating that the elevated inorganic N concentrations has resulted in eutrophication and increased biomass of phytoplankton. The eutrophication caused by inorganic N deposition indicates that PB yield in a majority of lakes in the northern hemisphere is (was) limited by N in their natural state. We, therefore, suggest that P limitation largely concerns lakes where the balance between N and P has been changed because of increased anthropogenic input of N.  相似文献   

11.
Sommer U  Sommer F  Feuchtmayr H  Hansen T 《Protist》2004,155(3):295-304
We used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d. Phytoplankton reproductive rates in the bottles without nutrient addition were calculated after correction for grazing by ciliates and indicated increasing nitrogen limitation with increasing copepod abundance. No nutrient limitation was found in the appendicularian mesocosms. The increase of nutrient limitation with increasing copepod density seems to be mainly the result of a trophic cascade effect: Copepods released nanoplankton from ciliate grazing pressure, and thereby enhanced nitrogen exhaustion by nanophytoplankton and reduced nitrogen excretion by ciliates. Nitrogen sequestration in copepod biomass, the mechanism predicted by the ecological stoichiometry theory, seems to have been a weaker effect because there was only little copepod growth during the experiment.  相似文献   

12.
13.
J. F. Talling 《Hydrobiologia》1986,138(1):139-160
Although some study of the subject began in 1899, wide-ranging information from African water-bodies has only become available since 1950. Important developments included the establishment of long-term centres of research, the adoption of improved methods for quantitative algal sampling, the more intensive study of environmental conditions, the beginnings of experimental testing, and the improvement of taxonomic knowledge.At higher latitudes (> 20 °) examples of pronounced algal seasonality are long-established; they are accompanied and influenced by marked changes in radiant energy income and so water temperature, and often by effects of seasonal water input. Illustrations are given from lakes in Morocco and South Africa.More generally in Africa, including the tropical belt, annual patterns of phytoplankton seasonality are usually either dominated by hydrological features (water input-output) or by hydrographic ones (water-column structure and circulation). Examples of both types are discussed, together with instances (e.g. L. Volta) of combined hydrological and hydrographic regulation. In both the seasonal abundance of diatoms is often distinct and complementary to that of blue-green algae, with differing relationships to vertical mixing and water retention.Horizontal variability in the seasonal cycle is especially pronounced in the larger or morphometrically subdivided lakes. Some inshore-offshore differentiation is also known to affect phytoplankton quantity (e.g. L. George) and species composition (e.g. L. Victoria). Longitudinal differentiation is common in elongate basins especially when with a massive or seasonal inflow at one end (e.g. L. Turkana, L. Nubia, L. Volta); occasional terminal upwelling can also be influential (e.g. southern L. Tanganyika). Such examples grade into the longitudinally differentiated seasonality of flowing river-reservoir systems, as studied on the Blue and White Niles.The annual amplitude of population density, expressed in orders of magnitude (=log10 units), is one measure of seasonal variability. It can exceed 3 orders both in systems subject to hydrological wash-out (e.g. Nile reservoirs) and in the more variable species components of lakes of long retention (e.g. L. Victoria). Low amplitudes can be characteristic of some components (e.g. green algae in L. Victoria) or of total algal biomass (e.g. L. George, L. Sibaya).Seasonal changes may be subordinated to inter-annual ones, especially in shallow and hydrologically unstable lakes (e.g. L. Nakuru).  相似文献   

14.
The phytoplankton communities of thirteen adjacent gravel-pit lakes in the lower Jarama river watershed (Madrid, Spain), were studied during spring mixing and summer stratification.If different seasons, the phytoplankton responded to different environmental factors. During spring, the abundance of SRP (soluble reactive phosphorus) and existence of a certain thermal stability resulted in the development of a greater biomass in some lakes. During summer, however, excessively high temperatures adversely affected the communities of the warmer lakes. At the species level, the responses were diverse; ordination techniques enabled us to group them.Some similarities were observed in phytoplankton composition between lakes, possibly due to local dispersion between adjacent lakes (frequented by abundant waterfowl).  相似文献   

15.
Ian Hawes 《Hydrobiologia》1985,123(1):69-79
The responses of phytoplankton populations to seasonal changes in radiation flux in two Antarctic lakes with extensive winter ice-cover are described. A phytoplankton capable of photosynthesis was found throughout the year in both systems. During winter, low incident radiation combined with thick layers of snow and ice prevented in situ photosynthesis becoming detectable. The beginning of spring was marked by a reduction in snow cover which resulted in a considerable increase in surface penetrating radiation. Planktonic algae rapidly adapted to utilise these increased levels efficiently, though they still showed characteristics of strong shade adaptation.Loss of ice cover at the start of the short open water period further increased the radiation levels and a summer population developed which was much less shade adapted. Saturation and photoinhibition effects were widespread during this period as the algae proved unable to utilise high radiation levels efficiently. They were however effective at the radiation fluxes prevalent in the lower part of the rapidly circulating water columns.  相似文献   

16.
Nutrient addition experiments conducted during the ice-free seasons of 1983 and 1984 in Gem Lake, an alpine lake in the Sierra Nevada mountains of California, indicate that algal biomass is limited by phosphorus, in combination with iron or copper. Phosphorus additions were always required to stimulate growth, but did not do so when phosphorus was the only nutrient added. Simultaneous additions of phosphorus and iron resulted in increased levels of chlorophyll, particulate carbon, particulate nitrogen and particulate phosphorus. Simultaneous additions of phosphorus and copper resulted in increases in chlorophyll, particulate nitrogen and particulate phosphorus, not in particulate carbon. Neither iron nor copper by itself stimulated growth.Particulate N : P ratios from all seasons in Gem Lake suggest that simultaneous micronutrient and phosphorus limitation exists throughout the summer, when nutrient and biomass levels remain low; limitation by phosphorus alone may appear in the fall and spring, when biomass and major ion concentrations increase dramatically.  相似文献   

17.
The quantitative importance of photosynthetically produced dissolved organic carbon (PDOC) released from phytoplankton as a source of carbon for pelagic, heterotrophic bacteria was investigated in four temperate Swedish lakes, of which two had low (≈20 mg Pt 1−1), and two moderately high (60–80 mg Pt 1−1) humic content. The bacterial assimilation of PDOC was estimated with the 14C method, and the total production of the heterotrophic bacteria was estimated with the [3H]thymidine incorporation method. The release of PDOC from natural communities of phytoplankton was not restricted to periods of photosynthesis, but often continued during periods of darkness. Heterotrophic bacteria often assimilated the labile components of the PDOC at high rates (up to 73% of the released PDOC was assimilated during the incubation in our experiments). The contribution of PDOC to bacterial production exhibited large within-lake seasonal variations, but PDOC was at certain times, both in humic and non-humic lakes, a quantitatively very important carbon source for the heterotrophic bacteria. Under periods of comparatively low primary production, heterotrophic bacteria in humic lakes appear to utilize allochthonous, humic substances as a substrate.  相似文献   

18.
SUMMARY 1. We tested the influence of ultraviolet radiation (UVR) and shallow stratification on phytoplankton and bacterioplankton from the surface and the base of the mixed layer in two boreal lakes in north-western Ontario, Canada.
2. We measured phytoplankton biomass and production, bacterioplankton production and plankton respiration after transplantation under three solar radiation treatments: ambient radiation (Photosynthetically active radiation (PAR) + ultraviolet-A (UVA) + ultraviolet-B (UVB)), minus UVB (PAR + UVA) and PAR only. We repeated this experiment on three occasions in each lake during the summer.
3. Solar stress (measured as reduced growth and photoinhibition) was generally only found in the 'base phytoplankton' (i.e. originating from the base of the mixed layer). No inhibition of photosynthesis by UVB exposure was found in near-surface phytoplankton. On the other hand, production of near-surface bacterioplankton was reduced following a 4-h UVR exposure but had increased after a 48-h exposure to both UVA and UVB compared with the PAR only treatment.
4. Negative effects of UVR on phytoplankton and bacterioplankton were not ubiquitous. We emphasise the importance of conducting experiments repeatedly, particularly those which test the effects of UVR on different community assemblages from different lakes.  相似文献   

19.
The aim of this research was to determine the main limiting nutrient (carbon, nitrogen or phosphorus) to bacterial production in different clear water Amazonian ecosystems during the high water period, when there is influence of the flooded land, mainly as sources of organic matter. Five stations were sampled in three clear water ecosystems: Trombetas River, Lake Batata and Caranã Stream. We estimated in each station the nutrient concentration, bacterial production and bacterial abundance. The experiment was set up with GF/F filtered water from all stations together with additions of glucose (400 M C), KNO3 (15 M N) and KH2PO4 (5 M P) in accordance with each treatment (C, N, P ,CN, CP, NP, CNP and no amends). Bacterial production was estimated after 24 h of incubation. We observed that the values of bacterial production after additions of phosphate alone (P treatment) were 2- to 6-fold greater than the values measured in control flasks. Additions of nitrate (N treatment) and glucose alone (C treatment) had no effect on the bacterial production in four out of five ecosystems studied. However, additions of glucose with phosphate (CP treatment) strongly stimulated bacterial production in all ecosystems studied, including treatments with phosphate addition only. We conclude that phosphorus is the main limiting nutrient to bacterioplankton production in these clear water Amazonian ecosystems during the high water period. In addition, we conclude that, together with phosphorus, additions of glucose stimulated the bacterial production mainly due to the low quality of the carbon pool present in these ecosystems.  相似文献   

20.
Nutrient limitation along a productivity gradient in wet meadows   总被引:1,自引:0,他引:1  
Olde Venterink  H.  van der Vliet  R.E.  Wassen  M.J. 《Plant and Soil》2001,234(2):171-179
Conservation management in meadows often focuses on reducing soil fertility and consequently community productivity as to promote and sustain species-rich vegetations. The productivity level to which nutrients are limiting growth is, however, unclear, as well as the relationship between productivity and the type of nutrient limitation. We carried out a fertilization experiment with N, P and K in six annually mown meadows along an aerial phytomass gradient (200–650 g m–2). All meadows were found to be growth-limited by nutrients. Low-productive meadows were N-limited, or N+P co-limited, whereas our higher productive meadows were co-limited by a combination of N, P and/or K. The results from our experiments were compared with the results from 45 other fertilization experiments with N, P and K in grasslands and wetlands (aerial phytomass range 50–1500 g m–2). Our results were consistent in nitrogen being the most frequent (co)-limiting nutrient, and regarding the equal frequence of occurrence of P (co)-limitation and K (co)-limitation (both in ca. 25–30% of all sites). Co-limitation occurred more often in our sites than in the other experiments. There was no clear relationship between aerial phytomass and type of nutrient limitation, except that K (co)-limitation only occurred at sites with phytomass above 200 g m–2, and P (co)-limitation below 600 g m–2. A comparison of productivity and nutrient concentrations in aerial phytomass among two years indicated that the type of nutrient limitation is not a static site characteristic but may vary with dynamic environmental conditions such as soil wetness; drought seems to enhance N-availability which may induce P- and K-limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号