首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fusarium oxysporum f. sp. lycopersici (FOL) induces resistance in pepper against the airborne pathogen Botrytis cinerea and the soil‐borne pathogen Verticillium dahliae. However, its practical use is limited due to its pathogenicity to other crops. In this study we tested several fractions of a heat‐sterilised crude FOL‐elicitor preparation to protect pepper against B. cinerea and V. dahliae. Only the protein‐free insoluble fraction of the preparation reduced B. cinerea infection. However, none of the fractions reduce V. dahliae symptoms. The insoluble protein‐free fraction induced expression of defence genes in the plant, namely a chitinase (CACHI2), a peroxidase (CAPO1), a sesquiterpene cyclase (CASC1) and a basic PR1 (CABPR1). Even though the CASC1 gene was not induced directly after treatment with the insoluble fraction in the leaves, it was induced after B. cinerea inoculation, showing a priming effect. The insoluble protein‐free FOL‐elicitor protected pepper against the airborne pathogen through a mechanism that involves induced responses in the plant, but different to the living FOL.  相似文献   

2.
Seven culturable bacterial isolates, obtained from the internal stem tissues of Solanum elaeagnifolium and successfully colonizing the internal stem tissues of tomato cv. Rio Grande, were screened for their in vivo antifungal activity against Fusarium oxysporum f.sp. lycopersici (FOL) and their growth‐promoting potential on tomato plants. SV101 and SV104 isolates, assessed on pathogen‐challenged tomato plants led to a significant decrease (77–83%) in Fusarium wilt severity and vascular browning extent (76%), as compared to the inoculated and untreated control. Isolates enhanced growth parameters on pathogen‐challenged and unchallenged tomato plants. SV104 and SV101 isolates were most effective in suppressing disease and enhancing plant growth. These two isolates were identified as Bacillus sp. str. SV101 ( KU043040 ) and B. tequilensis str. SV104 ( KU976970 ). They displayed antifungal activity against FOL; pathogen growth was inhibited by 64% and an inhibition zone (11.50 and 19.75 mm) against FOL could be formed using whole cell suspensions. SV101 and SV104 extracellular metabolites also inhibited FOL growth by 20 and 55%, respectively, as compared to control. B. tequilensis str. SV104 was shown to produce protease, chitinase, pectinase, IAA and siderophores. Bacillus sp. str. SV101 displayed pectinase activity and was found to be an IAA‐producing and phosphate‐solubilizing agent. To our knowledge, this is the first study reporting on S. elaeagnifolium use as a potential source of potent biocontrol and plant growth‐promoting agents.  相似文献   

3.
Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and belowground mutualism with arbuscular mycorrhizal fungi (AMF) in Plantago lanceolata L., using plant genotypes from lines selected for low and high constitutive levels of the iridoid glycosides (IG) aucubin and catalpol. As selection was based on IG concentrations in leaves, we first examined whether IG concentrations covaried in roots. Root and leaf IG concentrations were strongly positively correlated among genotypes, indicating genetic interdependence of leaf and root defense. We then found that root AMF arbuscule colonization was negatively correlated with root aucubin concentration. This negative correlation was observed both in plants grown with monocultures of Glomus intraradices and in plants colonized from whole-field soil inoculum. Overall, AMF did not affect total biomass of plants; an enhancement of initial shoot biomass was offset by a lower root biomass and reduced regrowth after defoliation. Although the precise effects of AMF on plant biomass varied among genotypes, plants with high IG levels and low AMF arbuscule colonization in roots did not produce less biomass than plants with low IG and high AMF arbuscule colonization. Therefore, although an apparent trade-off was observed between high root chemical defense and AMF arbuscule colonization, this did not negatively affect the growth responses of the plants to AMF. Interestingly, AMF induced an increase in root aucubin concentration in the high root IG genotype of P. lanceolata. We conclude that AMF does not necessarily stimulate plant growth, that direct plant defense by secondary metabolites does not necessarily reduce potential benefits from AMF, and that AMF can enhance concentrations of root chemical defenses, but that these responses are plant genotype-dependent.  相似文献   

4.
Fusarium oxysporum is a common soil‐borne pathogen that causes serious economic losses in tomato crops worldwide. The purpose of this study was to evaluate the influence of the bio‐control agents Bacillus amyloliquefaciens SN16‐1 and Pseudomonas fluorescens SN15‐2 and the pathogen Fusarium oxysporum f.sp. lycopersici (FOL) inoculation on tomato rhizosphere bacterial communities and growth, as measured by terminal restriction fragment length polymorphism (T‐RFLP). Treatment with SN16‐1 and SN15‐2 had a transient influence on indigenous bacterial communities, withSN16‐1 showing great potential for controlling FOL. The corresponding genera of terminal restriction fragments (T‐RFs) that were significantly altered after 10 days were obtained using Ribosomal Database Project (RDP) database comparison. Genera that produce antibiotics and promote plant growth were activated by SN16‐1 and FOL treatments, indicating that SN16‐1 responds quickly to FOL invasion. Moreover, the bioremediation activity characteristic of certain genera and the levels of enzymes that degrade pathogen cell walls were decreased while bacterial nutrient cycling and plant growth promotion were enhanced with FOL treatment. In conclusion, we found that SN16‐1 possesses the capacity to control tomato wilt, acts synergistically with soil microbes and does not have a persistent effect on the rhizosphere bacterial communities of tomato.  相似文献   

5.
The accumulation of chitinase and its involvement in systemic acquired disease resistance was analyzed using acibenzolar-S-methyl and salicylic acid (SA). Resistance against scab (pathogen: Cladosporium cucumerinum) and the accumulation of chitinase were rapidly induced in cucumber plants after treatment with acibenzolar-S-methyl. In contrast, SA protected the plants from C. cucumerinum and the accumulation of chitinase was induced only on the treated leaves. The accumulation of chitinase in response to inoculation with the pathogen was induced more rapidly in cucumber plants previously treated with acibenzolar-S-methyl than in plants pretreated with SA or water. Thus, it appears that a prospective signal(s), that induces systemic resistance, can be transferred from leaves treated with acibenzolar-S-methyl to the untreated upper and lower leaves where systemic resistance is elicited. In contrast, exogenously applied SA is not likely to function as a mobile, systemic resistance-inducing signal, because SA only induces localized acquired resistance.  相似文献   

6.
Tomato is a popular vegetable widely grown in the tropics, which is mainly attacked by fusarium wilt incited by Fusarium oxysporum f. sp. lycopersici (FOL). In the present scenario, an ecofriendly alternative strategy such as use of fungi from rhizosphere is being explored to combat the phytopathogen invasion. This study was carried out to evaluate the efficacy of Trichoderma asperellum MSST to promote the growth and yield parameters of tomato S-22, a susceptible variety. This study was also undertaken to manage fusarium wilt disease under in vitro and in vivo conditions. Significant increase in vegetative parameters like root length, shoot length, plant weight and chlorophyll content 60 days after sowing (DAS) was observed. There was reduction in the incidence of fusarium wilt in tomato up to 85%. Increase in the level of total phenol, peroxidase, polyphenoloxidase and phenylalanine ammonium lyase activity at 10th day of pathogen inoculation showed enhancement of plant defence mechanism by T. asperellum MSST against FOL. Overall study revealed that isolate MSST was proven to be potential biocontrol agent showing induced resistance against FOL.  相似文献   

7.
BACKGROUND AND AIMS: Insect damage to plants leads to wound-activated responses directed to healing of damaged tissues, as well as activation of defences to prevent further insect damage. Negative cross-talk exists between the jasmonic acid-based signalling system that is activated upon insect attack and the salicylic acid-based system frequently activated following pathogen infection. Thus, insect attack may compromise the ability of the plant to defend itself against pathogens and vice versa. However, insect herbivory and mechanical wounding have been shown to reduce fungal infections on some plants, although the underlying mechanisms remain to be defined. This work examines the effects of mechanical wounding on rust infection both locally and systemically in the broad bean, Vicia faba and follows changes in oxylipins in wounded leaves and unwounded leaves on wounded plants. METHODS: The lamina of first leaves was wounded by crushing with forceps, and first and second leaves were then inoculated, separately, with the rust Uromyces fabae at various times over a 24 h period. Wounded first leaves and unwounded second leaves were harvested at intervals over a 24 h period and used for analysis of oxylipin profiles. KEY RESULTS Mechanical wounding of first leaves of broad bean led to significantly reduced rust infection in the wounded first leaf as well as the unwounded second leaf. Increased resistance to infection was induced in plants inoculated with rust just 1 h after wounding and was accompanied by rapid and significant accumulation of jasmonic acid and two trihydroxy oxylipins in both wounded first leaves and unwounded second leaves. The two trihydroxy oxylipins were found to possess antifungal properties, reducing germination of rust spores. CONCLUSIONS: These results demonstrate the rapidity with which resistance to pathogen infection can be induced following wounding and provides a possible mechanism by which pathogen infection might be halted.  相似文献   

8.
Nine non-pathogenic bacterial isolates, recovered from Datura metel organs and able to colonise the internal stem tissues of tomato cultivar Rio Grande, were screened for their ability to suppress tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici (FOL), and to enhance plant growth. S33 and S85 isolates tested were found to be the most effective in decreasing Fusarium wilt severity by 94–95% compared to FOL-inoculated and untreated control. A significant enhancement of growth parameters was recorded on tomato plants inoculated or not with FOL. Both isolates were characterised and identified using 16S rDNA sequencing genes as Stenotrophomonas sp. str. S33 (KR818084) and Pseudomonas sp. str. S85 (KR818087). Screened in vitro for their antifungal activity towards FOL, these isolates led to 38.7% and 22.5% decrease in pathogen radial growth and to the formation of an inhibition zone of 12.75 and 8.37?mm respectively. Stenotrophomonas sp. str. S33 and Pseudomonas sp. str. S85 were found to be chitinase-, protease- and pectinase-producing strains but unable to produce hydrogen cyanide. Production of indole-3-acetic acid-like compounds, phosphate solubilising ability and pectinase activity were investigated for elucidating their plant growth-promoting traits and their endophytic colonisation ability.  相似文献   

9.
Expression of pathogenesis-related (PR) genes is part of the plant's natural defense response against pathogen attack. To study the in vivo role and function of the maize PRms protein, tobacco plants were transformed with the PRms cDNA under the control of the CaMV35S promoter. Transgenic tobacco plants grow faster and yield more leaf and seed biomass. By using immunoelectron microscopy, we found that PRms is associated with plasmodesmata in leaves of transgenic tobacco plants. Furthermore, we found that activation of sucrose efflux from photosynthetically active leaves and accumulation of higher levels of sucrose in leaf tissues are characteristic features of PRms tobacco plants. This, in turn, results in the constitutive expression of endogenous tobacco PR genes and resistance to phytopathogens. The expression of multiple plant defense genes can then be achieved by using a single transgene. These data provide a new approach for engineering disease-resistant plants while simultaneously improving plant yield and productivity through the modification of photoassimilate partitioning.  相似文献   

10.
Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces resistance against a broad spectrum of pathogens including Pseudomonas syringae pv. tomato DC3000. This study analyzed AR156-induced systemic resistance (ISR) to DC3000 in Arabidopsis ecotype Col-0 plants. Compared with mock-treated plants, AR156-treated ones showed an increase in biomass and reductions in disease severity and pathogen density in the leaves. The defense-related genes PR1, PR2, PR5, and PDF1.2 were concurrently expressed in the leaves of AR156-treated plants, suggesting simultaneous activation of the salicylic acid (SA)- and the jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways by AR156. The above gene expression was faster and stronger in plants treated with AR156 and inoculated with DC3000 than that in plants only inoculated with DC3000. Moreover, the cellular defense responses hydrogen peroxide accumulation and callose deposition were induced upon challenge inoculation in the leaves of Col-0 plants primed by AR156. Also, pretreatment with AR156 led to a higher level of induced protection against DC3000 in Col-0 than that in the transgenic NahG, the mutant jar1 or etr1, but the protection was absent in the mutant npr1. Therefore, AR156 triggers ISR in Arabidopsis by simultaneously activating the SA- and JA/ET-signaling pathways in an NPR1-dependent manner that leads to an additive effect on the level of induced protection.  相似文献   

11.
The development of new strategies to enhance resistance of plants to pathogens is instrumental in preventing agricultural losses. Lesion mimic, the spontaneous formation of lesions resembling hypersensitive response lesions in the absence of a pathogen, is a dramatic phenotype occasionally induced upon expression of certain transgenes in plants. These transgenes simulate the presence of a pathogen and, therefore, activate the plant anti-pathogen defense mechanisms and induce a state of systemic resistance. Lesion mimic genes have been successfully used to enhance the resistance of a number of different plants to pathogen attack. However, constitutive expression of these genes in plants is associated with the spontaneous formation of lesions on leaves and stems, reduced growth, and lower yield. We tested the possibility of using a wound-inducible promoter to control the expression of bacterio-opsin (bO), a transgene that confers a lesion mimic phenotype in tobacco and tomato plants when constitutively expressed. We found that plants with inducible expression of bO did not develop spontaneous lesions. Nevertheless, under controlled laboratory conditions, they were found to be resistant to infection by pathogens. The activation of defense mechanisms by the bO gene was not constitutive, and occurred in response to wounding or pathogen infection. Furthermore, wounding of transgenic tobacco plants resulted in the induction of systemic resistance to pathogen attack within 48 h. Our findings provide a promising initial assessment for the use of wound-inducible promoters as a new strategy to enhance pathogen resistance in transgenic crops by means of lesion mimic genes.  相似文献   

12.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3–14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects, …) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

13.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3-14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects,…) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

14.
Magnesium deficiency has been reported to affect plant growth and biomass partitioning between root and shoot. The present work aims to identify how Mg deficiency alters carbon partitioning in sugar beet (Beta vulgaris L.) plants. Fresh biomass, Mg and sugar contents were followed in diverse organs over 20 days under Mg-sufficient and Mg-deficient conditions. At the end of the treatment, the aerial biomass, but not the root biomass, of Mg-deficient plants was lower compared to control plants. A clear inverse relationship between Mg and sugar contents in leaves was found. Mg deficiency promoted a marked increase in sucrose and starch accumulation in the uppermost expanded leaves, which also had the lowest content of Mg among all the leaves of the rosette. The oldest leaves maintained a higher Mg content. [14C]Sucrose labelling showed that sucrose export from the uppermost expanded leaves was inhibited. In contrast, sucrose export from the oldest leaves, which are close to, and export mainly to, the roots, was not restricted. In response to Mg deficiency, the BvSUT1 gene encoding a companion cell sucrose/H+ symporter was induced in the uppermost expanded leaves, but without further enhancement of sucrose loading into the phloem. The observed increase in BvSUT1 gene expression supports the idea that sucrose loading into the phloem is defective, resulting in its accumulation in the leaf.  相似文献   

15.
The fungus Fusarium oxysporum f. sp. lycopersici (FOL) is known to cause vascular wilt on tomato almost over the world. Inoculation of FOL reduced plant growth and increased wilt of tomato. The following study examined the possible role of arbuscular mycorrhizal fungi (AMF) consortium comprising of Rhizophagus intraradices, Funneliformis mosseae and Claroideoglomus etunicatum against FOL in tomato and explored in an inducing plant systemic defense. AMF inoculation reduced the wilt disease within vascular tissue and in vivo production of fusaric acid was observed which may be responsible in reduced wilting. FOL had an antagonistic effect on AMF colonization, reduced the number of spores, arbuscules and vesicles. AMF also inhibited the damage induced by Fusarium wilt through increasing chlorophyll contents along with the activity of phosphate metabolising enzymes (acid and alkaline phosphatases). Moreover, tomato plants with mycorrhizal inoculation showed an increase in the level of antioxidant enzymes including glutathione reductase, catalase, and etc. with an ultimate influence on the elimination of reactive oxygen species. Moreover, rise in phosphatase along with antioxidant enzymatic systems and enhanced photosynthetic performance contributed to induced resistance against FOL in tomato.  相似文献   

16.
Nineteen phytopathogenic fluorescent Pseudomonas isolates were isolated from diseased witloof chicory (Cichorium intybus L. var. foliosum Hegi). They were compared with six Ps. fluorescens strains from culture collections, using SDS-PAGE of total cell proteins. The fluorescent pseudomonads examined showed seven different fingerprint types. The major group of phytopathogenic fluorescent pseudomonas revealed a fingerprint type which was frequently found on healthy chicory roots and leaves too. Some, but not all, of the isolates from healthy plants produced typical disease symptoms upon artificial inoculation of etiolated chicory leaves. Infectivity titrations showed a reduced efficiency of the latent pathogen PGSB-7228 to cause disease symptoms on the chicory leaves. The virulence of the latent pathogen is induced in the presence of wounded chicory tissue.  相似文献   

17.
Infection of cucumber (Cucumis sativus L.) with the bacterial pathogen Erwinia tracheiphila E. F. Smith causes vascular wilt disease in leaves, which may alter the suitability of the host plant for insects and other pathogens. In this study, densities of spotted (Diabrotica undecimpunctata howardi Barber) and striped (Acalymma vittata (Fab.) cucumber beetles (Coleoptera: Chrysomelidae) were higher on wilted leaves of mature and seedling field plants inoculated with E. tracheiphila. Bacterial infection or feeding by D. undecimpunctata howardii beetles increased total peroxidase enzyme activity in inoculated or infested leaves of greenhouse seedlings, but only beetle feeding induced higher activities in untreated systemic leaves on the same plants. Neither bacterial infection nor beetle infestation led to the development of systemic acquired resistance (SAR) to the fungal pathogen Colletotrichum orbiculare (Berk & Mont.) Arx. Susceptibility to this fungus was greater on E. tracheiphila-infected plants than on controls. The positive association between leaf wilt symptom development and beetle occurrence thus occurs in the presence of an oxidative but not anti-pathogenic response induced by both the insect and the pathogen.  相似文献   

18.
Pea (Pisum sativum L. cv. Azad) plants exposed to 4 and 40 microM of Cd for 7 d in hydroponic culture were analysed with reference to the distribution of metal, the accumulation of biomass and the metal's effects on antioxidants and antioxidative enzymes in roots and leaves. Cd-induced a decrease in plant biomass. The maximum accumulation of Cd occurred in roots followed by stems and leaves. An enhanced level of lipid peroxidation and an increased tissue concentration of hydrogen peroxide (H2O2) in both roots and leaves indicated that Cd caused oxidative stress in pea plants. Roots and leaves of pea plants responded differently to Cd with reference to the induction of enhanced activities of most of the enzymes monitored in the present study. These differential responses to Cd were further found to be associated with levels of Cd to which the plants were exposed. Cd-induced enhancement in superoxide dismutase (SOD) activity was more at 40 microM than at 4 microM in leaves. While catalase (CAT) prominently increased in leaves both at 4 and 40 microM Cd, ascorbate peroxidase (APX) showed maximum stimulation at 40 microM Cd in roots. Enhancement in glutathione reductase (GR) activity was also more at 40 microM than at 4 microM Cd in roots. While glutathione peroxidase (GPOX) activity decreased in roots and remained almost unmodified in leaves, glutathione S-transferase (GST) showed pronounced stimulation in both roots and leaves of pea plants exposed to 40 microM Cd. Increased activities of antioxidative enzymes in Cd-treated plants suggest that they have some additive function in the mechanism of metal tolerance in pea plants.  相似文献   

19.
Bacillus amyloliquefaciens KPS46 is a rhizobacterium that induces systemic protection in soybean (Glycine max L.) against several diseases and enhances plant growth. In this study, treatment of soybean seed with KPS46 provided protection to leaves from bacterial pustule, caused by Xanthomonas axonopodis pv. glycines (Xag). KPS46 treatment also increased phenolic content and β-1,3-glucanase and peroxidase activity levels in leaves over non-treated plants. Differential expression of these traits was more rapid and pronounced when KPS46 treated plants were infected with Xag, this pattern indicating priming. Also associated with induced resistance by KPS46 was increased production of salicylic acid (SA) and jasmonic acid (JA) in soybean leaves, suggesting both SA- and JA-dependent signaling pathways are systemically triggered by KPS46 seed treatment. When KPS46 was applied to Arabidopsis roots, however, resistance against Pseudomonas syringae pv. tomato (Pst) was induced only in host genotypes with intact jasmonate, ethylene, and auxin sensitivity. Thus, induced resistance against Pst by KPS46 was SA independent and JA/ethylene dependent. Proteins induced in soybean leaves by KPS46 seed treatment and by the seed treatment in combination with pathogen inoculation were determined by proteomic analysis. Among 20 proteins upregulated in KPS46-treated plants, compared with non-treated plants, only three were defense related. In plants that received both KPS46 treatment and inoculation with Xag, nine of the 20 upregulated protein, as compared with proteins produced Xag inoculated plants having no KPS46 treatment, were defense related. This pattern of increased induction of defense-related proteins following pathogen infection of KPS46 treated plants supported priming by KPS46. Aside from proteins with defense-related function, most of the proteins induced by KPS46 were involved in metabolism and energy conversion, reflecting the strong direct positive effect that KPS46 has on soybean growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号