首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CD4+CD25+ T regulatory cells (Tregs) can actively suppress immune responses and thus have substantial therapeutical potential. Clinical application is, however, frustrated by their scarcity, anergic status, and lack of defined specificity. We found that a single injection of a small number of expanded but not fresh HY-specific Tregs protected syngeneic male skin grafts from rejection by immune-competent recipients. The expanded Tregs were predominantly located in the grafts and graft-draining lymph nodes. In vitro expanded Tregs displayed a phenotype of CD25highCD4lowFoxp3+CTLA4+, and also up-regulated IL10 and TGFbeta while down-regulating IFN-gamma, GM-CSF, IL5, and TNF-alpha production. Furthermore, expanded Tregs appeared to express a reduced level of Foxp3, which could be prevented by adding TGFbeta to the culture, and they also tended to lose Foxp3 following the repeated stimulation. Finally, a proportion of expanded HY-specific Tregs secreted IL2 in response to their cognate peptide, and this finding could be confirmed using Tregs from Foxp3GFP reporter mice. We not only demonstrated that expanded Tregs are superior to fresh Tregs in suppressing T cell responses against alloantigens, but also revealed some novel immunobiological properties of expended Tregs which are very instructive for modifying current Treg expansion procedures.  相似文献   

2.
A deficiency of CD4+CD25+ regulatory T cells (CD25+ Tregs) in lymphopenic mice can result in the onset of autoimmune gastritis. The gastric H/K ATPase alpha (H/Kalpha) and beta (H/Kbeta) subunits are the immunodominant autoantigens recognized by effector CD4+ T cells in autoimmune gastritis. The mechanism by which CD25+ Tregs suppress autoimmune gastritis in lymphopenic mice is poorly understood. To investigate the antigenic requirements for the genesis and survival of gastritis-protecting CD25+ Tregs, we analyzed mice deficient in H/Kbeta and H/Kalpha, as well as a transgenic mouse line (H/Kbeta-tsA58 Tg line 224) that lacks differentiated gastric epithelial cells. By adoptive transfer of purified T cell populations to athymic mice, we show that the CD25+ Treg population from mice deficient in either one or both of H/Kalpha and H/Kbeta, or from the H/Kbeta-tsA58 Tg line 224 mice, is equally effective in suppressing the ability of polyclonal populations of effector CD4+ T cells to induce autoimmune gastritis. Furthermore, CD25+ Tregs, from either wild-type or H/Kalpha-deficient mice, dramatically reduced the expansion of pathogenic H/Kalpha-specific TCR transgenic T cells and the induction of autoimmune gastritis in athymic recipient mice. Proliferation of H/Kalpha-specific T cells in lymphopenic hosts occurs predominantly in the paragastric lymph node and was dependent on the presence of the cognate H/Kalpha Ag. Collectively, these studies demonstrate that the gastritis-protecting CD25+ Tregs do not depend on the major gastric Ags for their thymic development or their survival in the periphery, and that CD25+ Tregs inhibit the Ag-specific expansion of pathogenic T cells in vivo.  相似文献   

3.
Naturally arising CD4+CD25+ regulatory T (T(R)) cells have been shown to prevent and cure murine T cell-mediated colitis. However, their exact mechanism of controlling colitogenic memory CD4+ T cells in in vivo systems excluding the initial process of naive T cell activation and differentiation has not been examined to date. Using the colitogenic effector memory (T(EM)) CD4+ cell-mediated colitis model induced by adoptive transfer of colitogenic CD4+CD44(high)CD62L(-) lamina propria (LP) T cells obtained from colitic CD4+CD45RB(high) T cell-transferred mice, we have shown in the present study that CD4+CD25+ T(R) cells are able not only to suppress the development of colitis, Th1 cytokine production, and the expansion of colitogenic LP CD4+ T(EM) cells but also to expand these cells by themselves extensively in vivo. An in vitro coculture assay revealed that CD4+CD25+ T(R) cells proliferated in the presence of IL-2-producing colitogenic LP CD4+ T(EM) cells at the early time point (48 h after culture), followed by the acquisition of suppressive activity at the late time point (96 h after culture). Collectively, these data suggest the distinct timing of the IL-2-dependent expansion of CD4+CD25+ T(R) cells and the their suppressive activity on colitogenic LP CD4+ T(EM) cells.  相似文献   

4.
It is clear that dendritic cells (DCs) are essential for priming of T cell responses against tumors. However, the distinct roles DC subsets play in regulation of T cell responses in vivo are largely undefined. In this study, we investigated the capacity of OVA-presenting CD4-8-, CD4+8-, or CD4-8+ DCs (OVA-pulsed DC (DC(OVA))) in stimulation of OVA-specific T cell responses. Our data show that each DC subset stimulated proliferation of allogeneic and autologous OVA-specific CD4+ and CD8+ T cells in vitro, but that the CD4-8- DCs did so only weakly. Both CD4+8- and CD4-8+ DC(OVA) induced strong tumor-specific CD4+ Th1 responses and fully protective CD8+ CTL-mediated antitumor immunity, whereas CD4-8- DC(OVA), which were less mature and secreted substantial TGF-beta upon coculture with TCR-transgenic OT II CD4+ T cells, induced the development of IL-10-secreting CD4+ T regulatory 1 (Tr1) cells. Transfer of these Tr1 cells, but not T cells from cocultures of CD4-8- DC(OVA) and IL-10-/- OT II CD4+ T cells, into CD4-8+ DC(OVA)-immunized animals abrogated otherwise inevitable development of antitumor immunity. Taken together, CD4-8- DCs stimulate development of IL-10-secreting CD4+ Tr1 cells that mediated immune suppression, whereas both CD4+8- and CD4-8+ DCs effectively primed animals for protective CD8+ CTL-mediated antitumor immunity.  相似文献   

5.
CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion   总被引:20,自引:0,他引:20  
Naturally occurring CD4(+) regulatory T cells are generally identified through their expression of CD25. However, in several experimental systems considerable T(reg) activity has been observed in the CD4(+)CD25(-) fraction. Upon adoptive transfer, the expression of CD25 in donor-derived cells is not stable, with CD4(+)CD25(+) cells appearing in CD4(+)CD25(-) T cell-injected animals and vice versa. We show in this study that CD25(+) cells arising from donor CD25(-) cells upon homeostatic proliferation in recipient mice express markers of freshly isolated T(reg) cells, display an anergic state, and suppress the proliferation of other cells in vitro. The maintenance of CD25 expression by CD4(+)CD25(+) cells depends on IL-2 secreted by cotransferred CD4(+)CD25(-) or by Ag-stimulated T cells in peripheral lymphoid organs.  相似文献   

6.
CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer   总被引:12,自引:0,他引:12  
CD4+CD25+ regulatory T cells (Treg) that suppress T cell-mediated immune responses may also regulate other arms of an effective immune response. In particular, in this study we show that Treg directly inhibit NKG2D-mediated NK cell cytotoxicity in vitro and in vivo, effectively suppressing NK cell-mediated tumor rejection. In vitro, Treg were shown to inhibit NKG2D-mediated cytolysis largely by a TGF-beta-dependent mechanism and independently of IL-10. Adoptively transferred Treg suppressed NK cell antimetastatic function in RAG-1-deficient mice. Depletion of Treg before NK cell activation via NKG2D and the activating IL-12 cytokine, dramatically enhanced NK cell-mediated suppression of tumor growth and metastases. Our data illustrate at least one mechanism by which Treg can suppress NK cell antitumor activity and highlight the effectiveness of combining Treg inhibition with subsequent NK cell activation to promote strong innate antitumor immunity.  相似文献   

7.

Introduction

The present study was devised to understand the role of systemic indoleamine 2,3-dioxygenase (IDO) in the tolerance induction for orally tolerized mice in collagen-induced arthritis (CIA). We examined whether IDO-expressing dendritic cells (DCs) are involved in the generation of CD4+CD25+ regulatory T cells during the induction of oral tolerance in a murine CIA model.

Methods

Type II collagen was fed six times to DBA/1 mice beginning 2 weeks before immunization, and the effect on arthritis was assessed. To examine the IDO expression, the DCs of messenger RNA and protein were analyzed by RT-PCR and Flow cytometry. In addition, a proliferative response assay was also carried out to determine the suppressive effects of DCs through IDO. The ability of DCs expressing IDO to induce CD4+CD25+ T regulatory cells was examined.

Results

CD11c+ DCs in Peyer's patches from orally tolerized mice expressed a higher level of IDO than DCs from nontolerized CIA mice. IDO-expressing CD11c+ DCs were involved in the suppression of type II collagen-specific T-cell proliferation and in the downregulation of proinflammatory T helper 1 cytokine production. The suppressive effect of IDO-expressing CD11c+ DCs was mediated by Foxp3+CD4+CD25+ regulatory T cells.

Conclusion

Our data suggest that tolerogenic CD11c+ DCs are closely linked with the induction of oral tolerance through an IDO-dependent mechanism and that this pathway may provide a new therapeutic modality to treat autoimmune arthritis.  相似文献   

8.
Metallothionein, a cysteine-rich stress response protein that is naturally induced by a variety of immunologic stressors, has been shown to suppress autoimmune disorders through mechanisms not yet fully defined. In the present study, we examined the underlying mechanisms by which metallothionein might mediate such regulation of autoimmunity. Na?ve CD4+ T cells from metallothionein-deficient mice differentiated to produce significantly less IL-10, TGF-gamma, and repressor of GATA, but more IFN-gamma and T-bet, when compared with those from wild-type mice. The levels of IL-4 and GATA-3 production were not different between the two groups of mice. Conversely, treatment with exogenous metallothionein during the priming phase drove na?ve wild-type CD4+ T cells to differentiate into cells producing more IL-10 and TGF-beta, but less IFN-gamma than untreated cells. Metallothionein-primed cells were hyporesponsive to restimulation, and suppressive to T cell proliferation in an IL-10-dependent manner. Lymphocytes from metallothionein-deficient mice displayed significantly elevated levels of AP-1 and JNK activities in response to stimulation compared with those from wild-type controls. Importantly, transgenic mice overexpressing metallothionein exhibited significantly reduced susceptibility to collagen-induced arthritis and enhanced IL-10 level in the serum, relative to their nontransgenic littermates. Taken together, these data suggest that metallothionein is able to promote the generation of IL-10- and TGF-beta-producing type 1 regulatory T-like cells by downregulating JNK-dependent AP-1 activity. Thus, metallothionein may play an important role in the regulation of Th1-dependent autoimmune arthritis, and may represent both a potential target for therapeutic manipulation and a critical element in the diagnostic assessment of disease potential.  相似文献   

9.
Ex vivo treatment of bone marrow-derived dendritic cells (DCs) with TNF-alpha has been previously shown to induce partial maturation of DCs that are able to suppress autoimmunity. In this study, we demonstrate that i.v. administration of TNF-alpha-treated, semimature DCs pulsed with thyrogloblin (Tg), but not with OVA Ag, inhibits the subsequent development of Tg-induced experimental autoimmune thyroiditis (EAT) in CBA/J mice. This protocol activates CD4(+)CD25(+) T cells in vivo, which secrete IL-10 upon specific recognition of Tg in vitro and express regulatory T cell (Treg)-associated markers such as glucocorticoid-induced TNFR, CTLA-4, and Foxp3. These CD4(+)CD25(+) Treg cells suppressed the proliferation and cytokine release of Tg-specific, CD4(+)CD25(-) effector cells in vitro, in an IL-10-independent, cell contact-dependent manner. Prior adoptive transfer of the same CD4(+)CD25(+) Treg cells into CBA/J hosts suppressed Tg-induced EAT. These results demonstrate that the tolerogenic potential of Tg-pulsed, semimature DCs in EAT is likely to be mediated through the selective activation of Tg-specific CD4(+)CD25(+) Treg cells and provide new insights for the study of Ag-specific immunoregulation of autoimmune diseases.  相似文献   

10.
IL-3, a cytokine secreted by Th cells, functions as a link between the immune and the hematopoietic system. We previously demonstrated the potent inhibitory role of IL-3 on osteoclastogenesis, pathological bone resorption, and inflammatory arthritis. In this study, we investigated the novel role of IL-3 in development of regulatory T (Treg) cells. We found that IL-3 in a dose-dependent manner increases the percentage of Foxp3(+) Treg cells indirectly through secretion of IL-2 by non-Treg cells. These IL-3-expanded Treg cells are competent in suppressing effector T cell proliferation. Interestingly, IL-3 treatment significantly reduces the severity of arthritis and restores the loss of Foxp3(+) Treg cells in thymus, lymph nodes, and spleen in collagen-induced arthritis mice. Most significantly, we show that IL-3 decreases the production of proinflammatory cytokines IL-6, IL-17A, TNF-α, and IL-1 and increases the production of anti-inflammatory cytokines IFN-γ and IL-10 in collagen-induced arthritis mice. Thus, to our knowledge, we provide the first evidence that IL-3 play an important role in modulation of Treg cell development in both in vitro and in vivo conditions, and we suggest its therapeutic potential in the treatment of rheumatoid arthritis and other autoimmune diseases.  相似文献   

11.
Modulation of dendritic cell function by naive and regulatory CD4+ T cells   总被引:5,自引:0,他引:5  
The consequences of interactions between dendric cells (DCs) and either naive CD4+ T cells or regulatory CD4+CD25+ T cells on the expression of proinflammatory IL-6 and anti-inflammatory IL-10 in DC were examined over a period of 12 h, spanning the time frame during which stable T cell-DC interactions shape the development of tolerance and immunity in vivo. We demonstrate that the basal production of IL-6 and IL-10, which is initiated following DC stimulation with LPS, is modified in distinctly different ways by interaction with the two T cell populations. Naive CD4 T cells skew DC cytokine production toward IL-6 and suppress IL-10, whereas CD4+CD25+ T cells have the opposite effect. CD8 T cells or memory CD4 T cells do not influence basal cytokine production by stimulated DC. The effect of CD4+CD25+ T cells is dominant in coculture with naive CD4 T cells as long as inflammatory LPS is absent; the addition of LPS abrogates the suppression of IL-6. However, the modulating influence of CD4+CD25+ T cells remains evident in the enhancement of IL-10 production. Thus, mutual interactions between DC and CD4+ T cell subpopulations following contact with pathogens are likely to influence the strength and quality of incipient immune responses in the local microenvironment.  相似文献   

12.
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy.  相似文献   

13.
14.
Regulatory T cells (Tregs) play a critical role in the maintenance of airway tolerance. We report that inhaled soluble Ag induces adaptive Foxp3(+) Tregs, as well as a regulatory population of CD4(+) T cells in the lungs and lung-draining lymph nodes that express latency-associated peptide (LAP) on their cell surface but do not express Foxp3. Blocking the cytokine IL-10 or TGF-β prevented the generation of LAP(+) Tregs and Foxp3(+) Tregs in vivo, and the LAP(+) Tregs could also be generated concomitantly with Foxp3(+) Tregs in vitro by culturing naive CD4(+) T cells with Ag and exogenous TGF-β. The LAP(+) Tregs strongly suppressed naive CD4(+) T cell proliferation, and transfer of sorted OVA-specific LAP(+) Tregs in vivo inhibited allergic eosinophilia and Th2 cytokine expression in the lung, either when present at the time of Th2 sensitization or when injected after Th2 cells were formed. Furthermore, inflammatory innate stimuli from house dust mite extract, nucleotide-binding oligomerization domain containing 2 ligand, and LPS, which are sufficient for blocking airway tolerance, strongly decreased the induction of LAP(+) Tregs. Taken together, we concluded that inducible Ag-specific LAP(+) Tregs can suppress asthmatic lung inflammation and constitute a mediator of airway tolerance together with Foxp3(+) Tregs.  相似文献   

15.
Graves' disease (GD) is one of the most common autoimmune diseases. The immune dysfunction in GD involves the generation of thyroid-stimulating hormone receptor (TSHR) autoantibodies that presumably arise consequent to interactions among dendritic cells (DCs), T cells, and regulatory T (Treg) cells. However, the immunological mechanisms of interactions between them that lead to the induction and regulation of this autoimmune disease are poorly defined. In this study, we investigated whether DCs are the main cause of the defective activity of Treg cells in GD patients. We found a significant decrease in the percentage of circulating CD4(+)CD25(+)FOXP3(+) Treg cells in untreated GD patients (uGD), which was negatively correlated with the concentration of TSHR autoantibodies. uGD-derived DCs were polarized to increase the number of plasmacytoid DCs (pDCs) and conferred the ability to abrogate the suppressive function of Treg cells through inducing apoptosis of CD4(+)CD25(+) Treg cells in an IFN-α-dependent manner, and elevated thyroid hormones further exacerbated the effect. The nucleotide UDP, which inhibits IFN-α secretion of pDCs through P2Y6 receptor signaling, restored the suppressive function of CD4(+)CD25(+) Treg cells. Collectively, uGD-derived DCs through pDC polarization and elevated thyroid hormones act in concert to impair the regulatory capacity of Treg cells, facilitating the production of TSHR autoantibodies in the pathogenesis of GD.  相似文献   

16.
We have demonstrated previously that local, adenoviral-mediated gene transfer of viral IL-10 to a single joint of rabbits and mice with experimental arthritis can suppress disease in both the treated and untreated contralateral joints. This contralateral effect is mediated in part by APCs able to traffic from the treated joint to lymph nodes as well as to untreated joints. Moreover, injection of dendritic cells (DC) genetically modified to express IL-4 or Fas ligand was able to reverse established murine arthritis. To examine the ability of exosomes derived from immunosuppressive DCs to reduce inflammation and autoimmunity, murine models of delayed-type hypersensitivity and collagen-induced arthritis were used. In this study, we demonstrate that periarticular administration of exosomes purified from either bone marrow-derived DCs transduced ex vivo with an adenovirus expressing viral IL-10 or bone marrow-derived DCs treated with recombinant murine IL-10 were able to suppress delayed-type hypersensitivity responses within injected and untreated contralateral joints. In addition, the systemic injection of IL-10-treated DC-derived exosomes was able suppress the onset of murine collagen-induced arthritis as well as reduce severity of established arthritis. Taken together, these data suggest that immature DCs are able to secrete exosomes that are involved in the suppression of inflammatory and autoimmune responses. Thus DC-derived exosomes may represent a novel, cell-free therapy for the treatment of autoimmune diseases.  相似文献   

17.

Background

Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/Principal Findings

We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions

We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.  相似文献   

18.
Dendritic cells (DC) are key regulators of immune responses. Mature DC are traditionally considered to be immunogenic, although there is accumulating evidence that they can also be tolerogenic and induce Ag-specific regulatory T cells (Tregs). However, the mechanism of this Treg induction and the site of Treg action in vivo are yet to be defined. In this study, using the experimental model of interphotoreceptor retinoid-binding protein peptide (1-20)-induced experimental autoimmune uveoretinitis, we show that s.c. inoculation of IRBP-peptide-pulsed IL-10-producing LPS-activated mature DC (IL-10-DC) at one site (the cervical region) suppresses autoimmunity induced at a separate site (the inguinal region). Our data show that s.c. IL-10-DC correlates with an increase in the number of CD4(+)CD25(+)Foxp3(+) Tregs at the DC-draining lymph nodes (DC-dLN). However, although MHCII(-/-) IL-10-DC also induces Treg expansion at this DC-dLN, they failed to suppress experimental autoimmune uveoretinitis. Furthermore, unlike wild-type IL-10-DC, MHCII(-/-) IL-10-DC did not correlate with an increase in the percentage of Tregs expressing CD62L at the DC-dLN, nor did they associate with an increase in Treg number at a distal site. Similar effects were also observed after s.c. hen egg lysozyme-pulsed IL-10-DC, which produced a strong reduction in the number and activation of proliferating Ag-specific CD4(+) 3A9 T effector cells. We therefore propose that IL-10-DC require MHCII-dependent Ag presentation, and hence TCR ligation, to promote CD62L-mediated trafficking of Tregs to the site of T effector cell priming, where they suppress autoimmunity.  相似文献   

19.
Ocular pigment epithelia contribute to immune privilege by suppressing T cell activation and converting T cells into regulatory T regulatory cells (Tregs) that inhibit bystander T cell activation. Iris pigment epithelium (IPE) does so through direct cell-cell contact with naive T cells, and this suppressive contact is via interactions between B7 expressed constitutively on IPE cells and CTLA-4 expressed on a subpopulation of CD8+ T cells. We have now examined whether TGFbeta is required in this process. We report that IPE produces both soluble and membrane-bound active TGFbeta, but that only the latter is actually delivered to CD8+ T cells. In turn, these T cells become IPE Tregs by up-regulating their own expression of B7-1/B7-2 and soluble and membrane-bound TGFbeta. IPE Tregs through their expression of B7 are able to engage CTLA-4+ bystander T cells, and thus precisely, target delivery of membrane-bound TGFbeta. We propose that this mechanism of suppression via TGFbeta ensures that soluble active TGFbeta is not released into the ocular microenvironment where it can have unregulated and deleterious effects, including elevation of intraocular pressure and development of glaucoma.  相似文献   

20.
We recently identified CD8+CD122+ regulatory T cells that directly control CD8+ and CD4+ cells without intervention of APCs. In this study, we investigated the effector mechanism of CD8+CD122+ regulatory T cells by using an in vitro regulation system. The profile of cytokine expression revealed that IL-10 was predominantly produced by CD8+CD122+ cells, whereas other cytokines were similarly expressed in CD8+CD122+ cells and CD8+CD122- cells. Suppression of both proliferation and IFN-gamma production by CD8+CD122- cells by CD8+CD122+ cells was blocked by adding anti-IL-10 Ab to the culture but not by adding anti-TGF-beta Ab. When IL-10 was removed from the conditioned medium from CD8+CD122+ cells, the conditioned medium no longer showed regulatory activity. Finally, CD8+CD122+ cells from IL-10-deficient mice had no regulatory activity in vitro and reduced regulatory activity in vivo. Our results clearly indicate that IL-10 is produced by CD8+CD122+ cells and mediates the regulatory activity of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号