首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Host cell engineering is becoming a realistic option in whole bioprocess strategies to maximize product manufacturability. High molecular weight (MW) genomic DNA currently hinders bioprocessing of Escherichia coli by causing viscosity in homogenate feedstocks. We previously showed that co-expressing Staphylococcal nuclease and human Fab' fragment in the periplasm of E. coli enables auto-hydrolysis of genomic DNA upon cell disruption, with a consequent reduction in feedstock viscosity and improvement in clarification performance. Here we report the impact of periplasmic nuclease expression on stability of DNA and Fab' fragment in homogenates, host-strain growth kinetics, cell integrity at harvest and Fab' fragment productivity. Nuclease and Fab' plasmids were shown to exert comparable levels of growth burden on the host W3110 E. coli strain. Nuclease co-expression did not compromise either the growth performance or volumetric yield of the production strain. 0.5 g/L Fab' fragment (75 L scale) and 0.7 g/L (20 L scale) was achieved for both unmodified and cell-engineered production strains. Unexpectedly, nuclease-modified cells achieved maximum Fab' levels 8-10 h earlier than the original, unmodified production strain. Scale-down studies of homogenates showed that nuclease-mediated hydrolysis of high MW DNA progressed to completion within minutes of homogenization, even when homogenates were chilled on ice, with no loss of Fab' product and no need for additional co-factors or buffering.  相似文献   

2.
为了进一步提高大肠杆菌K4发酵生产果糖软骨素(K4CPS)的产量,将合成基因簇region 3启动子(PR3)3'端非翻译区(UTR)进行缺失突变,研究其对突变菌株K4CPS合成的影响。研究表明:在ops序列(RfaH蛋白结合位点)存在时,PR3启动子强度和K4CPS产量与UTR的长度变化无关;但ops序列缺失时,UTR的延长可导致PR3启动子的强度和K4CPS产量均低于对照菌株;反之,UTR的缩短能显著提高PR3启动子的强度,进而使K4CPS产量比原菌增加了46%,达到751 mg/L。  相似文献   

3.
4.
代谢工程与重组大肠杆菌的发酵   总被引:1,自引:0,他引:1  
利用代谢工程可以在重组大肠杆菌的改良中减少代谢副产物乙酸的累积,优化代谢系统,利于重组蛋白质的高表达以及重组菌的高密度发酵。应用代谢工程改良重组大肠杆菌主要包括阻断乙酸产生的主要途径、限制糖酵解途径上的碳代谢流、将过量的丙酮酸转化为其它低毒的副产物以及对碳代谢流进行分流等几个方面的工作。  相似文献   

5.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

6.
Guanosine 5′-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5′-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.  相似文献   

7.
Biotechnology Letters - Escherichia coli is an attractive and cost-effective cell factory for producing recombinant proteins such as single-chain variable fragments (scFvs). AntiEpEX-scFv is a...  相似文献   

8.
9.
Five fusion proteins between Z domains derived from Staphylococcal Protein A and Green Fluorescent Protein or Human Proinsulin were produced on the periplasm of Escherichia coli. The effects of the molecular weight and amino acid composition of the translocated peptide, culture medium composition, and growth phase of the bacterial culture were analyzed regarding the expression and periplasmic secretion of the recombinant proteins. It was found that secretion was not affected by the size of the translocated peptide (17-42 kDa) and that the highest periplasmic production values were obtained on the exponential phase of growth. Moreover, the highest periplasmic values were obtained in minimal medium, showing the relevance of the culture medium composition on secretion. In silico prediction analysis suggested that with respect to the five proteins used in this study, those that are prone to form alpha-helix structures are more translocated to the periplasm.  相似文献   

10.
Rising concerns about climate change and sustainable energy have attracted efforts towards developing environmentally friendly alternatives to fossil fuels. Biosynthesis of n-butane, a highly desirable petro-chemical, fuel additive and diluent in the oil industry, remains a challenge. In this work, we first engineered enzymes Tes, Car and AD in the termination module to improve the selectivity of n-butane biosynthesis, and ancestral reconstruction and a synthetic RBS significantly improved the AD abundance. Next, we did ribosome binding site (RBS) calculation to identify potential metabolic bottlenecks, and then mitigated the bottleneck with RBS engineering and precursor propionyl-CoA addition. Furthermore, we employed a model-assisted strain design and a nonrepetitive extra-long sgRNA arrays (ELSAs) and quorum sensing assisted CRISPRi to facilitate a dynamic two-stage fermentation. Through systems engineering, n-butane production was increased by 168-fold from 0.04 to 6.74 mg/L. Finally, the maximum n-butane production from acetate was predicted using parsimonious flux balance analysis (pFBA), and we achieved n-butane production from acetate produced by electrocatalytic CO reduction. Our findings pave the way for selectively producing n-butane from renewable carbon source.  相似文献   

11.
12.
Incorporation of norleucine in place of methionine residues during recombinant protein production in Escherichia coli is well known. Continuous feeding of methionine is commonly used in E. coli recombinant protein production processes to prevent norleucine incorporation. Although this strategy is effective in preventing norleucine incorporation, there are several disadvantages associated with continuous feeding. Continuous feeding increases the operational complexity and the overall cost of the fermentation process. In addition, the continuous feed leads to undesirable dilution of the fermentation medium possibly resulting in lower cell densities and recombinant protein yields. In this work, the genomes of three E. coli hosts were engineered by introducing chromosomal mutations that result in methionine overproduction in the cell. The recombinant protein purified from the fermentations using the methionine overproducing hosts had no norleucine incorporation. Furthermore, these studies demonstrated that the fermentations using one of the methionine overproducing hosts exhibited comparable fermentation performance as the control host in three different recombinant protein production processes. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:204–211, 2015  相似文献   

13.
代谢工程方法改造大肠杆菌生产胸苷   总被引:1,自引:0,他引:1  
胸苷是抗艾滋病药物司他夫定(3′-脱氧-2′,3′-双脱氢胸苷)和叠氮胸苷的重要前体物质。应用代谢工程方法对大肠杆菌Escherichia coli BL21(DE3)生物合成胸苷进行了研究。通过敲除E.coli BL21嘧啶回补途径的deo A、tdk和udp三个基因,BS03工程菌株能够积累21.6 mg/L胸苷。为了增加合成胸苷前体物核糖-5-磷酸和NADPH的供给,进一步敲除pgi和pyr L使工程菌BS05胸苷的产量提高到90.5 mg/L。而通过过表达胸苷合成途径的ush A、thy A、dut、ndk、nrd A和nrd B六个基因,菌株BS08胸苷的产量能达到272 mg/L。通过分批补料发酵,BS08最终可以积累1 248.8 mg/L的胸苷。本研究结果表明经过代谢工程改造的E.coli BL21具有良好的胸苷合成能力和应用潜力。  相似文献   

14.
The conformation of the (Fab′)2 fragment of the human immunoglubulin Kol has been investigated in solution by small angle X-ray scattering. The following molecular parameters were determined: radius of gyration 4.10 ± 0.05 nm; maximum distance 14.0 ± 0.5 nm and hydrated volume 150 ± 8 nm3. A model of the fragment is presented, which fits these experimental data and shows good agreement with the distance distribution function in real space and the scattering curve in reciprocal space. We have to assume that the (Fab′)2 fragment has many different conformations in solution. The method of small-angle X-ray scattering only allows the determination of an average conformation which is very similar within the resolution of the method to the static structure determined in the crystal.  相似文献   

15.
In Escherichi coli, Sec-dependent pathway is the major pathway for protein secretion into periplasm, and it has been widely used for the production of antibody fragment. However, in many cases, the production yields of antibody fragments were not satisfactory due to inefficient secretion and low solubility. Here, we have developed the host-vector system for the secretory production of single chain Fv (scFv) via signal recognition particle (SRP)-dependent pathway instead of Sec-dependent pathway. Use of DsbA signal peptide for SRP-dependent pathway allowed more efficient production of scFv compared with Secdependent pathway. To further improve the production yield and solubility of scFv via SRP pathway, the effect of several factors which are closely related to SRP pathway were examined. Among those factors, the co-expression of YidC could significantly improve the solubility of scFv with high expression level. For the large-scale production, fed-batch cultivations with engineered host-vector system were performed and, two different nutrient feeding solutions (complex vs. defined) were examined. When defined feeding solution was supplied, higher production yield (90 mg/L of scFv) could be obtained than complex feeding solution.  相似文献   

16.
3′-Azido-2′,3′-dideoxyuridine (AZDU, Azddu, CS-87) is a nucleoside analog of 3′-azido-3′-deoxythymidine (zidovudine, AZT) that has been shown to inhibit human immunodeficiency virus (HIV-1). AZDU is a potential candidate for treatment of pregnant mothers to prevent prenatal transmission of HIV/AIDS to their unborn children. A rapid and efficient high-performance liquid chromatography (HPLC) method for the determination of AZDU concentrations in rat maternal plasma, amniotic fluid, placental and fetal tissue samples has been developed and validated. Tissue samples were homogenized in distilled water, protein precipitated and extracted using a C-18 solid-phase extraction (SPE) method prior to analysis. Plasma and amniotic fluid samples were protein precipitated with 2 M perchloric acid prior to analysis. Baseline resolution was achieved using a 4.5% acetonitrile in 40 mM sodium acetate (pH 7) buffer mobile phase for amniotic fluid, placenta and fetus samples and with a 5.5% acetonitrile in buffer solution for plasma at flow-rates of 2.0 ml/min. The HPLC system consists of a Hypersil ODS column (150×4.6 mm) with a Nova-Pak C-18 guard column with detection at 263 nm. The method yields retention times of 6.2 and 12.2 min for AZDU and AZT in plasma and 8.3 and 17.6 min for AZDU and AZT in amniotic fluid, fetal and placental tissues. Limits of detection ranged from 0.01 to 0.075 μg/ml. Recoveries ranged from 81 to 96% for AZDU and from 82 to 96% for AZT in the different matrices. Intra-day (n=6) and inter-day (n=9) precision (% RSD) and accuracy (% Error) ranged from 1.48 to 6.25% and from 0.50 to 10.07%, respectively.  相似文献   

17.
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.  相似文献   

18.
A new expression system containing the Salmonella enterica prpBCDE promoter (P(prpB)) responsible for expression of the propionate catabolic genes (prp BCDE) and prpR encoding the positive regulator of this promoter has been developed and tested. The main features of the expression system compared to those based on the bacteriophage T7 promoter are low background expression and high induced expression in Escherichia coli strains BL21, BL21(DE3), MG1655, and W3110. In addition, propionate is an inexpensive, simple-to-use, nontoxic inducer that is attractive for large-scale protein production. Hence, this new system is highly complementary to the widely used T7 promoter-driven expression systems.  相似文献   

19.
Chinese hamster ovary (CHO) cells are used for recombinant protein production in the pharmaceutical industry but there is a need to improve expression levels. In the present work experiments were carried out to test the effectiveness of different 3′untranslated regions (3′UTRs) in promoting production of a naturally secreted luciferase. Seamless cloning was used to produce expression vectors in which Gaussia princeps luciferase coding sequences were linked to the human albumin, immunoglobulin or chymotrypsinogen 3′UTR. Stably transfected CHO cells expressing these constructs were selected. Luciferase activity in the culture medium was increased 2–3‐fold by replacing the endogenous 3′UTR with the albumin 3′UTR and decreased by replacement with immunoglobulin or chymotrypsinogen 3′UTR. Replacement of the native 3′UTR with the albumin 3′UTR led to a 10‐fold increase in luciferase mRNA levels. Deletion analysis of the albumin 3′UTR showed that loss of nucleotides 1–50, which removed an AU‐rich complex stem loop region, caused significant reductions in both luciferase protein expression and luciferase mRNA levels. The results suggest that recombinant protein expression and yield could be improved by the careful selection of appropriate 3′UTR sequences.  相似文献   

20.
【目的】L-丙氨酸的存在导致Escherichia coli的生长速率显著降低,最终会降低发酵过程中L-丙氨酸的体积合成速率。用温度调节基因开关(λpR-pL)高效、动态调控重组E. coli菌株菌体生长与L-丙氨酸合成过程,使两者相协调。【方法】以野生型E. coli B0016为出发菌株,敲除乙酸、甲酸、乙醇、琥珀酸、乳酸代谢产物合成途径以及丙氨酸消旋酶编码基因(ackA-pta、pflB、adhE、frdA、ldhA、dadX),获得菌株B0016-060B。将嗜热脂肪地芽孢杆菌(Geobacillus stearothermophilus)来源的L-丙氨酸脱氢酶基因(alaD)克隆于pL启动子下游,并在B0016-060B菌株中表达,获得菌株B0016-060B/pPL-alaD,进行摇瓶和发酵罐发酵考察菌体生长和L-丙氨酸发酵性能。【结果】竞争代谢途径的敲除显著降低了副产物合成量,仅形成极少量的乙酸、琥珀酸和乙醇。28 °C下菌株B0016-060B/pPL-alaD几乎不合成L-丙氨酸,可保证菌体快速生长;而在42 °C下可高效合成L-丙氨酸。经发酵罐发酵,可合成67.2 g/L L-丙氨酸,体积生产强度达到2.06 g/(L·h)。【结论】通过发酵培养温度的简单切换,分阶段实现了细胞的快速增量和L-丙氨酸的高强度合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号