首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further investigation.  相似文献   

2.
Cucurbitacin E (CuE), an active compound of the cucurbitacin family, possesses a variety of pharmacological functions and chemotherapy potential. Cucurbitacin E exhibits inhibitory effects in several types of cancer; however, its anticancer effects on brain cancer remain obscure and require further interpretation. In this study, efforts were initiated to inspect whether CuE can contribute to anti‐proliferation in human brain malignant glioma GBM 8401 cells and glioblastoma‐astrocytoma U‐87‐MG cells. An MTT assay measured CuE's inhibitory effect on the growth of glioblastomas (GBMs). A flow cytometry approach was used for the assessment of DNA content and cell cycle analysis. DNA damage 45β (GADD45β) gene expression and CDC2/cyclin‐B1 disassociation were investigated by quantitative real‐time PCR and Western blot analysis. Based on our results, CuE showed growth‐inhibiting effects on GBM 8401 and U‐87‐MG cells. Moreover, GADD45β caused the accumulation of CuE‐treated G2/M‐phase cells. The disassociation of the CDC2/cyclin‐B1 complex demonstrated the known effects of CuE against GBM 8401 and U‐87‐MG cancer cells. Additionally, CuE may also exert antitumour activities in established brain cancer cells. In conclusion, CuE inhibited cell proliferation and induced mitosis delay in cancer cells, suggesting its potential applicability as an antitumour agent.  相似文献   

3.
4.
Glioblastomas (GBMs) are the most common of both benign and malignant primary brain tumours, in which the inflammatory and immunologic abnormalities are involved. Interleukin‐17A (IL‐17A) plays an important role in various inflammatory diseases and cancers. Several recent studies revealed that the expression of IL‐17A was overexpressed in human GBMs tissue. However, the accurate role of IL‐17A in GBMs remains unclear. In this study, we aimed to explore the effect of IL‐17A on cell migration and invasion of GBMs and the mechanism by which the effects occurred. We found that exogenous IL‐17A promoted significantly cell migration and invasion abilities in two GBMs cell lines (U87MG and U251) in a time‐dependent manner. In addition, the protein expressions of PI3K, Akt and MMP‐2/9 were increased in the GBMs cells challenged by IL‐17A. Furthermore, a tight junction protein ZO‐1 was down‐regulated but Twist and Bmi1 were up‐regulated. Treatment with a PI3K inhibitor (LY294002) significantly reduced the abilities of both migration and invasion in U87MG and U251 cells. LY294002 treatment also attenuated the IL‐17A causing increases of protein levels of PI3K, AKT, MMP‐2/9, Twist and the decreases of protein level of ZO‐1 in the U87MG and U251 cells. Taken together, we concluded that IL‐17A promotes the GBM cells migration and invasion via PI3K/AKT signalling pathway. IL‐17A and its related signalling pathways may be potential therapeutic targets for GBM.  相似文献   

5.
Glioblastoma multiforme (GBM) is the most common and most aggressive malignant brain tumor. Despite optimal treatment and evolving standard of care, the median survival of patients diagnosed with GBM is only 12–15 months. In this study, we combined progesterone (PROG) and temozolomide (TMZ), a standard chemotherapeutic agent for human GBM, to test whether PROG enhances the antitumor effects of TMZ and reduces its side effects. Two WHO grade IV human GBM cells lines (U87MG and U118MG) and primary human dermal fibroblasts (HDFs) were repeatedly exposed to PROG and TMZ either alone or in combination for 3 and 6 days. Cell death was measured by MTT reduction assay. PROG and TMZ individually induced tumor cell death in a dose-dependent manner. PROG at high doses produced more cell death than TMZ alone. When combined, PROG enhanced the cell death-inducing effect of TMZ. In HDFs, PROG did not reduce viability even at the same high cytotoxic doses, but TMZ did so in a dose-dependent manner. In combination, PROG reduced TMZ toxicity in HDFs. PROG alone and in combination with TMZ suppressed the EGFR/PI3K/Akt/mTOR signaling pathway and MGMT expression in U87MG cells, thus suppressing cell proliferation. PROG and TMZ individually reduced cell migration in U87MG cells but did so more effectively in combination. PROG enhances the cytotoxic effects of TMZ in GBM cells and reduces its toxic side effects in healthy primary cells.  相似文献   

6.
PARP inhibitors have been approved for the therapy of cancers with homologous recombination (HR) deficiency based on the concept of “synthetic lethality”. However, glioblastoma (GBM) patients have gained little benefit from PARP inhibitors due to a lack of BRCA mutations. Herein, we demonstrated that concurrent treatment with the PARP inhibitor rucaparib and the PI3K inhibitor BKM120 showed synergetic anticancer effects on GBM U251 and U87MG cells. Mechanistically, BKM120 decreased expression of HR molecules, including RAD51 and BRCA1/2, and reduced HR repair efficiency in GBM cells, therefore increasing levels of apoptosis induced by rucaparib. Furthermore, we discovered that the two compounds complemented each other in DNA damage response and drug accumulation. Notably, in the zebrafish U87MG-RFP orthotopic xenograft model, nude mouse U87MG subcutaneous xenograft model and U87MG-Luc orthotopic xenograft model, combination showed obviously increased antitumor efficacy compared to each monotherapy. Immunohistochemical analysis of tumor tissues indicated that the combination obviously reduced expression of HR repair molecules and increased the DNA damage biomarker γ-H2AX, consistent with the in vitro results. Collectively, our findings provide new insight into combined blockade of PI3K and PARP, which might represent a promising therapeutic approach for GBM.Subject terms: Targeted therapies, Drug development  相似文献   

7.
Glioblastoma multiforme (GBM) is recognized as a most aggressive brain cancer with the worst prognosis and survival time. Owing to the anatomic location of gliomas, surgically removing the tumour is very difficult and avoiding damage to vital brain regions during radiotherapy is impossible. Therefore, therapeutic strategies for malignant glioma must urgently be improved. Recent studies have demonstrated that selective serotonin reuptake inhibitors (SSRIs) have cytotoxic effect on certain cancers. Considering as a more superior SSRI, escitalopram oxalate exhibits favourable tolerability and causes generally mild and temporary adverse events. However, limited information is revealed about the influence of escitalopram oxalate on GBM. Therefore, an attempt was made herein to explore the effects of escitalopram oxalate on GBM. The experimental results revealed that escitalopram oxalate significantly inhibits the proliferation and invasive ability of U‐87MG cells and significantly reduced the expressions of cell cycle inhibitors such as Skp2, P57, P21 and P27. Notably, escitalopram oxalate also induced significant apoptotic cascades in U‐87MG cells and autophagy in GBM8401 cells. An animal study indicated that escitalopram oxalate inhibits the proliferation of xenografted glioblastoma in BALB/c nude mice. These findings implied that escitalopram oxalate may have potential in treatment of glioblastomas.  相似文献   

8.
Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM.  相似文献   

9.
Glioblastoma multiforme (GBM) is the most aggressive type of glioma and GBMs frequently contain amplifications or mutations of the EGFR gene. The most common mutation results in a truncated receptor tyrosine kinase known as Delta EGFR that signals constitutively and promotes GBM growth. Here, we report that the 45-kDa variant of the protein tyrosine phosphatase TCPTP (TC45) can recognize Delta EGFR as a cellular substrate. TC45 dephosphorylated Delta EGFR in U87MG glioblastoma cells and inhibited mitogen-activated protein kinase ERK2 and phosphatidylinositol 3-kinase signaling. In contrast, the substrate-trapping TC45-D182A mutant, which is capable of forming stable complexes with TC45 substrates, suppressed the activation of ERK2 but not phosphatidylinositol 3-kinase. TC45 inhibited the proliferation and anchorage-independent growth of Delta EGFR cells but TC45-D182A only inhibited cellular proliferation. Notably, neither TC45 nor TC45-D182A inhibited the proliferation of U87MG cells that did not express Delta EGFR. Delta EGFR activity was necessary for the activation of ERK2, and pharmacological inhibition of ERK2 inhibited the proliferation of Delta EGFR-expressing U87MG cells. Expression of either TC45 or TC45-D182A also suppressed the growth of Delta EGFR-expressing U87MG cells in vivo and prolonged the survival of mice implanted intracerebrally with these tumor cells. These results indicate that TC45 can inhibit the Delta EGFR-mediated activation of ERK2 and suppress the tumorigenicity of Delta EGFR-expressing glioblastoma cells in vivo.  相似文献   

10.
Previously, we reported that nucleophosmin (NPM) was increased in glioblastoma multiforme (GBM). NPM is a phosphoprotein related to apoptosis, ribosome biogenesis, mitosis, and DNA repair, but details about its function remain unclear. We treated U87MG and A172 cells with small interference RNA (siRNA) and obtained a reduction of 80% in NPM1 expression. Knockdown at the protein level was evident after the 4th day and was maintained until the 7th day of transfection that was investigated by quantitative proteomic analysis using isobaric tags. The comparison of proteomic analysis of NPM1-siRNA against controls allowed the identification of 14 proteins, two proteins showed increase and 12 presented a reduction of expression levels. Gene ontology assigned most of the hypoexpressed proteins to apoptosis regulation, including GRP78. NPM1 silencing did not impair cell proliferation until the 7th day after transfection, but sensitized U87MG cells to temozolomide (TMZ), culminating with an increase in cell death and provoking at a later period a reduction of colony formation. In a large data set of GBM patients, both GRP78 and NPM1 genes were upregulated and presented a tendency to shorter overall survival time. In conclusion, NPM proved to participate in the apoptotic process, sensitizing TMZ-treated U87MG and A172 cells to cell death, and in association with upregulation of GRP78 may be helpful as a predictive factor of poor prognosis in GBM patients.  相似文献   

11.
Glioblastoma multiforme (GBM) is one of the utmost malignant tumors. Excessive angiogenesis and invasiveness are the major reasons for their uncontrolled growth and resistance toward conventional strategies resulting in poor prognosis. In this study, we found that low-dose JSI-124 reduced invasiveness and tumorigenicity of GBM cells. JSI-124 effectively inhibited VEGF expression in GBM cells. In a coculture study, JSI-124 completely prevented U87MG cell–mediated capillary formation of HUVECs and the migration of HUVECs when cultured alone or cocultured with U87MG cells. Furthermore, JSI-124 inhibited VEGF-induced cell proliferation, motility, invasion and the formation of capillary-like structures in HUVECs in a dose-dependent manner. JSI-124 suppressed VEGF-induced p-VEGFR2 activity through STAT3 signaling cascade in HUVECs. Immunohistochemistry analysis showed that the expression of CD34, Ki67, p-STAT3 and p-VEGFR2 protein in xenografts was remarkably decreased. Taken together, our findings provide the first evidence that JSI-124 effectively inhibits tumor angiogenesis and invasion, which might be a viable drug in anti-angiogenesis and anti-invasion therapies.  相似文献   

12.
13.
Glioblastoma multiforme (GBM) is the most aggressive and common type of human primary brain tumor. Glioblastoma stem-like cells (GSCs) have been proposed to contribute to tumor initiation, progression, recurrence, and therapeutic resistance of GBM. Therefore, targeting GSCs could be a promising strategy to treat this refractory cancer. Calmodulin (CaM), a major regulator of Ca2+-dependent signaling, controls various cellular functions via interaction with multiple target proteins. Here, we investigated the anticancer effect of hydrazinobenzoylcurcumin (HBC), a Ca 2+/CaM antagonist, against GSCs derived from U87MG and U373MG cells. HBC significantly inhibited not only the self-renewal capacity, such as cell growth and neurosphere formation but also the metastasis-promoting ability, such as migration and invasion of GSCs. HBC induced apoptosis of GSCs in a caspase-dependent manner. Notably, HBC repressed the phosphorylation of Ca 2+/CaM-dependent protein kinase II (CaMKII), c-Met, and its downstream signal transduction mediators, thereby reducing the expression levels of GSC markers, such as CD133, Nanog, Sox2, and Oct4. In addition, the knockdown of CaMKIIγ remarkably decreased the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking c-Met signaling pathway in U87MG GSCs. These results suggest that HBC suppresses the stem-like features of GBM cells via downregulation of CaM/CaMKII/c-Met axis and therefore CaMKII may be a novel therapeutic target to eliminate GSCs.  相似文献   

14.
Using an innovative approach toward multiple carbon–carbon bond-formations that relies on the multifaceted catalytic properties of titanocene complexes we constructed a series of C1–C7 analogs of curcumin for evaluation as brain and peripheral nervous system anti-cancer agents. C2-Arylated analogs proved efficacious against neuroblastoma (SK-N-SH & SK-N-FI) and glioblastoma multiforme (U87MG) cell lines. Similar inhibitory activity was also evident in p53 knockdown U87MG GBM cells. Furthermore, lead compounds showed limited growth inhibition in vitro against normal primary human CD34+hematopoietic progenitor cells. Taken together, the present findings indicate that these curcumin analogs are viable lead compounds for the development of new central and peripheral nervous system cancer chemotherapeutics with the potential for little effects on normal hematopoietic progenitor cells.  相似文献   

15.
ABSTRACT: BACKGROUND: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. RESULTS: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. CONCLUSIONS: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.  相似文献   

16.
Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling‐induced chloride current ICl,swell. In this study, we investigated the effects of ICl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of ICl,swell, DCPIB, potently reduced the ICl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB‐treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the ICl,swell may be a potential drug target for GBM.  相似文献   

17.
18.
Radiosynthesis and evaluation of [11C]GSK1838705A in mice using microPET and determination of specificity in human GBM UG87MR cells are described herein. The radioligand was synthesized by reacting desmethyl-GSK1838705A with [11C]CH3I using GE FX2MeI module in ~5% yield (EOS), >95% radiochemical purity and a specific activity of 2.5 ± 0.5 Ci/μmol. MicroPET imaging in mice indicated that [11C]GSK1838705A penetrated blood brain barrier (BBB) and showed retention of radiotracer in brain. The radioligand exhibited high uptake in U87MG cells with >70% specific binding to IGF1R. Our experiments suggest that [11C]GSK-1838705A can be a potential PET radiotracer for the in vivo quantification of IGF1R expression in GBM and other brain tumors.  相似文献   

19.
Channelling of glucose via glycogen, known as the glycogen shunt, may play an important role in the metabolism of brain tumours, especially in hypoxic conditions. We aimed to dissect the role of glycogen degradation in glioblastoma (GBM) response to ionising radiation (IR). Knockdown of the glycogen phosphorylase liver isoform (PYGL), but not the brain isoform (PYGB), decreased clonogenic growth and survival of GBM cell lines and sensitised them to IR doses of 10–12 Gy. Two to five days after IR exposure of PYGL knockdown GBM cells, mitotic catastrophy and a giant multinucleated cell morphology with senescence-like phenotype developed. The basal levels of the lysosomal enzyme alpha-acid glucosidase (GAA), essential for autolysosomal glycogen degradation, and the lipidated forms of gamma-aminobutyric acid receptor-associated protein-like (GABARAPL1 and GABARAPL2) increased in shPYGL U87MG cells, suggesting a compensatory mechanism of glycogen degradation. In response to IR, dysregulation of autophagy was shown by accumulation of the p62 and the lipidated form of GABARAPL1 and GABARAPL2 in shPYGL U87MG cells. IR increased the mitochondrial mass and the colocalisation of mitochondria with lysosomes in shPYGL cells, thereby indicating reduced mitophagy. These changes coincided with increased phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase 2, slower ATP generation in response to glucose loading and progressive loss of oxidative phosphorylation. The resulting metabolic deficiencies affected the availability of ATP required for mitosis, resulting in the mitotic catastrophy observed in shPYGL cells following IR. PYGL mRNA and protein levels were higher in human GBM than in normal human brain tissues and high PYGL mRNA expression in GBM correlated with poor patient survival. In conclusion, we show a major new role for glycogen metabolism in GBM cancer. Inhibition of glycogen degradation sensitises GBM cells to high-dose IR indicating that PYGL is a potential novel target for the treatment of GBMs.Subject terms: Cancer metabolism, CNS cancer  相似文献   

20.
Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号