首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Macrophages have been described as 'factories' of pro-inflammatory cytokines. Several years ago the present investigators reported that binding of inactive myeloperoxidase (iMPO) to the macrophage-mannose receptor resulted in the induction of TNF and other cytokines. Also, if endothelial cells were incubated with iMPO, but not enzymatically active myeloperoxidase (MPO), upregulation of cytokine mRNA and cytokines was observed. Taken in their entirety, the data suggest a dichotomy of function for myeloperoxidase; that is, enzymatically active MPO functions primarily in cell killing through the 'cytotoxic triad' and iMPO functions as an immunoregulatory molecule through the induction of numerous cytokines. These studies underscore a previously unrecognized interaction among neutrophils, endothelial cells and macrophages, resulting in the induction of TNF and perpetuation of inflammation. The inflammation induced could be relevant in a number of diseases in which neutrophils play a prominent role. The importance of this interaction in the pathogenesis of rheumatoid arthritis is currently under investigation.  相似文献   

2.
The role of inflammation in Alzheimer's disease, Parkinson's disease, and multiple sclerosis has recently come under increased scrutiny. Associated with these inflammatory responses are tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species (ROS), both believed to be derived from brain microglia. In addition to the above, the presence of myeloperoxidase (MPO) in these diseased brains has been reported by a number of investigators. However, the possible role of MPO and enzymatically inactive MPO (iMPO) as the "choreographers" of the destruction done by TNF-alpha and ROS is not generally recognized. Previously, our laboratory has reported that MPO/iMPO enhance macrophage generation of ROS and expression of proinflammatory cytokine genes as well as gene products. Recent studies in our laboratory indicate that the same response occurs with microglia. A paradigm is presented for the perpetuation of inflammation associated with neurodegenerative diseases. This model describes the unrecognized consequences of the stimulation of microglia by MPO or iMPO. Both MPO and iMPO and/or its receptor may represent new therapeutic targets for the treatment of these diseases.  相似文献   

3.
《Phytomedicine》2014,21(6):847-856
Rheumatoid arthritis (RA) is a chronic inflammatory disease which leads to destruction of joints. Current treatment modalities for RA either produce symptomatic relief (NSAIDs) or modify the disease process (DMARDs). Though effective, their use is also limited by their side effects. As a result, the interest in alternative, well tolerated anti-inflammatory remedies has re-emerged. Our aim was to evaluate the antioxidant and antiarthritic activity of Boswellia serrata gum resin extract (BSE) in collagen induced arthritis. Arthritis was induced in male Wistar rats by collagen induced arthritis (CIA) method. BSE was administered at doses of 100 and 200 mg/kg body weight once daily for 21 days. The effects of treatment in the rats were assessed by biochemical (articular elastase, MPO, LPO, GSH, catalase, SOD and NO), inflammatory mediators (IL-1β, IL-6, TNF-α, IL-10, IFN-γ and PGE2), and histological studies in joints. BSE was effective in bringing significant changes on all the parameters (articular elastase, MPO, LPO, GSH, catalase, SOD and NO) studied. Oral administration of BSE resulted in significantly reduced levels of inflammatory mediators (IL-1β, IL-6, TNF-α, IFN-γ and PGE2), and increased level of IL-10. The protective effects of BSE against RA were also evident from the decrease in arthritis scoring and bone histology. The abilities to inhibit proinflammatory cytokines and modulation of antioxidant status suggest that the protective effect of Boswellia serrata extract on arthritis in rats might be mediated via the modulation of immune system.  相似文献   

4.
5.
Rheumatoid arthritis (RA) is an immune-mediated disease of unknown cause that primarily affects the joints and ultimately leads to joint destruction. In recent years, the potential role of DNA methylation in the development of RA is raising great expectations among clinicians and researchers. DNA methylation influences diverse aspects of the disease and regulates epigenetic silencing of genes and behavior of several cell types, especially fibroblast-like synoviocytes (FLS), the most resident cells in joints. The activation of FLS is generally regarded as a key process in the development of RA that actively results in the promotion of ongoing inflammation and joint damage. It has also been shown that aberrant DNA methylation occurs in the pathogenesis of RA and contributes to the development of the disease. Recently, there has been an impressive increase in studies involving DNA methylation in RA. In this paper, we consider the role of DNA methylation in the development of RA.  相似文献   

6.
Thymoquinone (TQ) is the major active compound derived from Nigella sativa. Our aim of this work was to evaluate the antioxidant and antiarthritic activity of TQ in Wistar rat by collagen induced arthritis (CIA). TQ was administered at a dose of 5mgkg(-1) body weight once daily for 21days. The effects of treatment in the rats were assessed by biochemical (articular elastase, MPO, LPO, GSH, catalase, SOD and NO), inflammatory mediators (IL-1β, IL-6, TNF-α, IL-10, IFN-γ and PGE(2)) and histological studies in joints. TQ was effective in bringing significant changes on all the parameters (articular elastase, MPO, LPO, GSH, catalase, SOD and NO) studied. Oral administration of TQ resulted in significantly reduced the levels of pro-inflammatory mediators (IL-1β, IL-6, TNF-α, IFN-γ and PGE(2)) and increased level of IL-10. The protective effects of TQ against RA were also evident from the decrease in arthritis scoring and bone histology. In conclusion, the fact that TQ abolished a number of factors known to be involved in RA pathogenesis indicates that the administration of thymoquinone may have potential value in the treatment of inflammatory disease.  相似文献   

7.
The aim of the study was to visualize chronic experimental arthritis with near-infrared fluorescence imaging (NIRF) in a murine experimental arthritis model of rheumatoid arthritis (RA) (flare-up arthritis). The flare-up arthritis model is a modification of the primary antigen-induced arthritis (AIA) model. NIRF was done for two preparations of the fluorochrome Cy5.5, one native and the other albumin conjugated. Histological features of flare-up arthritis were evaluated.AIA was induced in 16 mice (strain C57/Bl6); flare-up arthritis was induced in a subgroup of eight. On day 7 after induction of flare-up arthritis, four mice received 50 nmol/kg native dye and four mice equimolar concentrations of the dye as albumin-dye conjugate intravenously. NIRF imaging was performed immediately before injection (baseline) and until 72 h thereafter. Arthritis severity was evaluated histologically for primary AIA and flare-up arthritis mice.NIRF imaging revealed higher fluorochrome uptake in all inflamed knees compared to contralateral ones. The signal intensities induced by native Cy5.5 were higher than those generated by albumin-Cy5.5 conjugate. Histological evaluation of arthritic joints showed similar abnormalities in flare-up arthritis and in primary AIA joints.Imaging of flare-up arthritis in the near-infrared range was successful for both fluorochrome preparations, but albumin conjugation prior to injection does not improve the uptake of dye in arthritic joints. Flare-up arthritis is a feasible model of chronic relapse of arthritis in human RA.  相似文献   

8.

Aims

The clinical significance of myeloperoxidase (MPO) has been the focus of investigation because it may contribute to the chronic, non-microbial inflammatory process in various diseases. Here, we determined serum MPO levels in rheumatoid arthritis (RA) and other autoimmune or inflammatory conditions, and investigated the associations between MPO levels and disease activity indicators in RA.

Main methods

The distribution of MPO was determined in serum samples from patients with RA, systemic lupus erythematosus (SLE), primary Sjögren's syndrome (pSS), dermatomyositis (DM), or ankylosing spondylitis (AS) and from healthy controls using commercial ELISA kits. Associations of serum MPO levels with the disease variables of RA patients were evaluated.

Key findings

All patient samples analyzed showed higher serum levels of MPO than healthy controls. Furthermore, MPO levels in RA were significantly higher than those in the other diseases with the exception of DM. Higher MPO levels were observed in RA patients with increased C-reactive protein (p = 0.005) or neutrophil percentage (p < 0.001), as well as in those with highly active disease (p < 0.001). Moderate positive correlations between MPO levels and IgM (r = 0.334, p = 0.001), C-reactive protein (r = 0.293, p = 0.003), erythrocyte sedimentation rate (r = 0.240, p = 0.016), or DAS28 (r = 0.350, p < 0.001) were also demonstrated.

Significance

The MPO concentration is likely to increase in patients with chronic inflammation. The associations between MPO and the disease variables of RA patients support a role for MPO in the inflammatory process of the disease.  相似文献   

9.
Thioredoxin (TRX) is an oxidative stress-inducible biological antioxidant that is highly expressed in the synoviocytes of rheumatoid arthritis (RA) patients. There is much evidence that oxidative stress plays a key role in the inflammation and destruction of RA joints; the functional relationship between TRX and RA remains unknown, however. We therefore investigated the role played by TRX in the inflammatory and joint-damaging processes of RA using a murine model in which arthritis was induced by administering a mixture of anti-type II collagen monoclonal antibodies (mAb) and lipopolysaccharide (LPS). In Wt mice mAb/LPS injection induced neutrophil infiltration, cartilage destruction, and chondrocyte apoptosis within the joints, all of which were dramatically suppressed in TRX transgenic (TRX-Tg) mice. Moreover, the 8-hydoxy-2'-deoxyguanosine (8-OHdG) expression seen in Wt mice after mAb/LPS injection was almost completely inhibited in TRX-Tg mice. The administration of recombinant TRX also suppressed mAb/LPS-induced joint swelling in Wt mice. Taken together, these results suggest that TRX protects against arthritis and is a plausible candidate with which to develop novel therapies for the treatment of RA.  相似文献   

10.
Urokinase plasminogen activator (uPA) is an important regulator of fibrinolysis in synovial fluid. An increase of uPA activity and expression of its receptor have been reported in joints of patients with rheumatoid arthritis (RA). The aim of the present study was to assess the arthritogenic capacity of uPA and the mechanisms by which this effect is mediated. uPA was injected into the knee joints of healthy mice, and morphological signs of arthritis were assessed 4 days after the injection. The prerequisite of different leukocyte populations for the development of uPA-triggered arthritis was assessed by selective cell depletion. The inflammatory capacity of uPA was assessed in vitro. Finally, levels of uPA were measured in 67 paired blood and synovial fluid samples from RA patients. The synovial fluid from RA patients displayed higher levels of uPA compared with blood samples. Morphological signs of arthritis were found in 72% of uPA-injected joints compared with in only 18% of joints injected with PBS (P < 0.05). Synovitis was characterised by infiltration of CD4-Mac-1+ mononuclear cells, by the formation of pannus and by occasional cartilage destruction. The absence of monocytes and lymphocytes diminished the frequency of synovitis (P < 0.01), indicating an arthritogenic role of both these leukocyte populations. Synthetic uPA inhibitor downregulated the incidence of uPA-triggered arthritis by 50%. uPA induced arthritis, stimulating the release of proinflammatory cytokines IL-6, IL-1beta and tumour necrosis factor alpha. Accumulation of uPA locally in the joint cavity is a typical finding in erosive RA. uPA exerts potent arthritogenic properties and thus may be viewed as one of the essential mediators of joint inflammation.  相似文献   

11.
We aimed to determine the importance of neutrophil activation and the source of oxidative stress in the pathogenesis of rheumatoid arthritis (RA) by quantification of advanced oxidation protein products (AOPP) and total thiol levels as markers of oxidative protein damage, malondialdehyde (MDA) levels as a marker of lipid peroxidation and myeloperoxidase (MPO) activity as a marker of neutrophil activation in patients with RA. Fifty-seven rheumatoid arthritis patients were included in the study and sub-grouped according to disease activity (active, n = 31; inactive, n = 26) and compared with healthy controls (n = 25). Serum MPO activity, AOPP, MDA, and thiol levels were measured by an enzymic spectrophotometric method. Serum MPO activity (p < 0.001), AOPP (p < 0.001), MDA (p < 0.001) and levels of thiol (p < 0.002), were higher in the patient group than the controls. Active and inactive RA groups were compared with the control group and there were significant differences between each parameter. MPO activity, AOPP, MDA and thiol levels were significantly higher in both active and inactive RA patients than the controls. On the other hand, when a comparison was made between active and the inactive stage, a statistically significant difference was present only in MDA (p < 0.05) and AOPP levels (p < 0.05). There was also a significant positive correlation between all parameters. These data strongly suggest that neutrophils, which constitute the most important source of chlorinated oxidants due to their high MPO content, may be involved in serum AOPP formation and therefore the production of a novel class of pro-inflammatory mediators of oxidative stress in RA patients and that protein oxidation could play an important role in the pathogenesis of RA as does lipid peroxidation.  相似文献   

12.

Background

Arthritis refers to inflammation of joints and includes common disorders such as rheumatoid arthritis (RA) and spondyloarthropathies (SpAs). These diseases differ mainly in terms of their clinical manifestations and the underlying pathogenesis. Glycoproteins in synovial fluid might reflect the disease activity status in the joints affected by arthritis; yet they have not been systematically studied previously. Although markers have been described for assisting in the diagnosis of RA, there are currently no known biomarkers for SpA.

Materials and methods

We sought to determine the relative abundance of glycoproteins in RA and SpA by lectin affinity chromatography coupled to iTRAQ labeling and LC-MS/MS analysis. We also used ELISA to validate the overexpression of VCAM-1, one of the candidate proteins identified in this study, in synovial fluid from RA patients.

Results and discussion

We identified proteins that were previously reported to be overexpressed in RA including metalloproteinase inhibitor 1 (TIMP1), myeloperoxidase (MPO) and several S100 proteins. In addition, we discovered several novel candidates that were overexpressed in SpA including Apolipoproteins C-II and C-III and the SUN domain-containing protein 3 (SUN3). Novel molecules found overexpressed in RA included extracellular matrix protein 1 (ECM1) and lumican (LUM). We validated one of the candidate biomarkers, vascular cell adhesion molecule 1 (VCAM1), in 20 RA and SpA samples using ELISA and confirmed its overexpression in RA (p-value <0.01). Our quantitative glycoproteomic approach to study arthritic disorders should open up new avenues for additional proteomics-based discovery studies in rheumatological disorders.  相似文献   

13.
Urokinase plasminogen activator (uPA) is an important regulator of fibrinolysis in synovial fluid. An increase of uPA activity and expression of its receptor have been reported in joints of patients with rheumatoid arthritis (RA). The aim of the present study was to assess the arthritogenic capacity of uPA and the mechanisms by which this effect is mediated. uPA was injected into the knee joints of healthy mice, and morphological signs of arthritis were assessed 4 days after the injection. The prerequisite of different leukocyte populations for the development of uPA-triggered arthritis was assessed by selective cell depletion. The inflammatory capacity of uPA was assessed in vitro. Finally, levels of uPA were measured in 67 paired blood and synovial fluid samples from RA patients. The synovial fluid from RA patients displayed higher levels of uPA compared with blood samples. Morphological signs of arthritis were found in 72% of uPA-injected joints compared with in only 18% of joints injected with PBS (P < 0.05). Synovitis was characterised by infiltration of CD4-Mac-1+ mononuclear cells, by the formation of pannus and by occasional cartilage destruction. The absence of monocytes and lymphocytes diminished the frequency of synovitis (P < 0.01), indicating an arthritogenic role of both these leukocyte populations. Synthetic uPA inhibitor downregulated the incidence of uPA-triggered arthritis by 50%. uPA induced arthritis, stimulating the release of proinflammatory cytokines IL-6, IL-1β and tumour necrosis factor alpha. Accumulation of uPA locally in the joint cavity is a typical finding in erosive RA. uPA exerts potent arthritogenic properties and thus may be viewed as one of the essential mediators of joint inflammation.  相似文献   

14.
15.
16.

Introduction  

Collagen-induced arthritis (CIA) is a mouse model for rheumatoid arthritis (RA) and is induced after immunization with type II collagen (CII). CIA, like RA, is an autoimmune disease leading to destruction of cartilage and joints, and both the priming and inflammatory phases have been suggested to be dependent on proteases. In particular, the cysteine proteases have been proposed to be detrimental to the arthritic process and even immunomodulatory. A natural inhibitor of cysteine proteases is cystatin C.  相似文献   

17.
Human ceruloplasmin (CP) is a multifunctional copper-binding protein produced in the liver. CP oxidizes Fe2+ to Fe3+, decreasing the concentration of Fe2+ available for generating harmful oxidant species. CP is also a potent inhibitor of leukocyte myeloperoxidase (MPO) (Kd=130 nM), a major source of oxidants in vivo. Rheumatoid arthritis (RA) is an inflammatory autoimmune disease affecting flexible joints and characterized by activation of both inflammatory and coagulation processes. Indeed, the levels of CP, MPO, and thrombin are markedly increased in the synovial fluid of RA patients. Here we show that thrombin cleaves CP in vitro at 481Arg–Ser482 and 887Lys–Val888 bonds, generating a nicked species that retains the native-like fold and the ferroxidase activity of the intact protein, whereas the MPO inhibitory function of CP is abrogated. Analysis of the synovial fluid of 24 RA patients reveals that CP is proteolytically degraded to a variable extent, with a fragmentation pattern similar to that observed with thrombin in vitro, and that proteolysis is blocked by hirudin, a highly potent and specific thrombin inhibitor. Using independent biophysical techniques, we show that thrombin has intrinsic affinity for CP (Kd=60–270 nM), independent of proteolysis, and inhibits CP ferroxidase activity (KI=220±20 nM). Mapping of thrombin binding sites with specific exosite-directed ligands (i.e., hirugen, fibrinogen γ′-peptide) and thrombin analogues having the exosites variably compromised (i.e., prothrombin, prethrombin-2, βT-thrombin) reveals that the positively charged exosite-II of thrombin binds to the negatively charged upper region of CP, while the protease active site and exosite-I remain accessible. These results suggest that thrombin can exacerbate inflammation in RA by impairing the MPO inhibitory function of CP via proteolysis and by competitively inhibiting CP ferroxidase activity.Notably, local administration of hirudin, a highly potent and specifc thrombin inhibitor, reduces the concentration of active MPO in the synovial fluid of RA patients and has a beneficial effect on the clinical symptoms of the disease.  相似文献   

18.
The synovial tissue stands at the epicenter of joint pathology in rheumatoid arthritis (RA). As a primary target of the disease, studies on the synovium have provided invaluable insights into the mechanisms involved in disease pathogenesis. Recent work has, however, revealed the importance of a previously unseen anatomic compartment in direct contact with the joint space, namely the subchondral bone marrow. Bone marrow edema (BME) visible on magnetic resonance imaging (MRI) is clinically meaningful in both early and late RA as it associates with future development of bone erosions and poor functional outcomes. Although the histopathologic correlates of MRI-based BME in early RA remain obscure, studies in advanced disease are consistent in describing lymphocytic inflammatory infiltrates within the subchondral marrow cavity of affected joints. In this review, we discuss the nature of bone marrow lesions in patients with RA, analyze their relationship with synovitis, and explore their potential contribution to the pathological processes of the disease.Rheumatoid arthritis (RA) is traditionally regarded as an archetypal disease of the synovial tissue. The synovial membrane indeed undergoes early inflammatory changes, which include increased vascularity as well as intimal lining layer hyperplasia and accumulation of macrophages, plasma cells, T cells, B cells, dendritic cells, natural killer cells and mast cells in the sublining, among other changes [1]. Collectively, localization of inflammation to the synovium is primarily responsible for the dysregulated cellular and molecular mechanisms that ultimately lead to the typical signs and symptoms of RA, including joint pain, stiffness, swelling and structural changes. Although the pathogenic and clinical importance of synovitis is beyond question, it is becoming increasingly apparent that a ''synovio-centric'' model of RA could be limiting. Indeed, other anatomic compartments appear to be involved at all stages of the disease. The most important example comes from the recognition that clinical arthritis and subclinical synovitis are anticipated by a pre-articular immunologic phase possibly developing in lymphoid tissues as well as in the lungs [2,3]. Full-blown joint disease itself spreads well beyond synovial tissue inflammation. Established arthritis can be characterized by the involvement of at least two other compartments that are in direct contact with the joint space. These include the draining lymph nodes (LNs) [4,5] and, of special relevance, the subchondral bone marrow (BM) [6].As dysregulated B cell responses are central pathogenic events in RA and B-cell autoreactivity originates, at least in part, from defective checkpoints within the BM (a primary lymphoid organ) [7], the role of this compartment in the immunopathogenesis of RA has attracted great attention over the years. Data supporting the existence of BM abnormalities were mainly derived from studies on marrow aspirates/biopsies from the sternum and the iliac crest, which are primary hematopoietic and immunologic sites in adult life. The role that the ''red marrow'' might play in the immunologic disturbances of RA thus appears interesting but not completely unexpected. Less predictably, evidence has accumulated supporting the additional involvement of the BM adjacent to inflamed joints at peripheral sites. This is normally a fat-rich tissue (''yellow marrow'') where hematopoiesis is not prominent. In RA, the fat can be replaced by a vascularized, cell-rich inflammatory tissue. Combined with imaging data coming from magnetic resonance imaging (MRI) studies, histopathologic changes described within the subchondral BM have been postulated to be intimately involved in the pathological processes producing local inflammation and tissue remodeling in RA joints [6,8-10]. Here we will discuss the most relevant findings related to BM alterations in RA, focusing on their morphological characteristics and pathologic significance. In view of the clinical relevance of MRI findings, special emphasis is given to the subchondral BM.  相似文献   

19.
Abnormal hyperplasia of fibroblast‐like synoviocytes (FLS) leads to the progression of rheumatoid arthritis (RA). This study aimed to investigate the role of miR‐124a in the pathogenesis of RA. The viability and cell cycle of FLS in rheumatoid arthritis (RAFLS) were evaluated by Cell Counting Kit 8 and flow cytometry assay. The expression of PIK3CA, Akt, and NF‐κB in RAFLS was examined by real‐time PCR and Western blot analysis. The production of tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 was detected by ELISA. The joint swelling and inflammation in collagen‐induced arthritis (CIA) mice were examined by histological and immunohistochemical analysis. We found that miR‐124a suppressed the viability and proliferation of RAFLS and increased the percentage of cells in the G1 phase. miR‐124a suppressed PIK3CA 3'UTR luciferase reporter activity and decreased the expression of PIK3CA at mRNA and protein levels. Furthermore, miR‐124a inhibited the expression of the key components of the PIK3/Akt/NF‐κB signal pathway and inhibited the expression of pro‐inflammatory factors TNF‐α and IL‐6. Local overexpression of miR‐124a in the joints of CIA mice inhibited inflammation and promoted apoptosis in FLS by decreasing PIK3CA expression. In conclusion, miR‐124a inhibits the proliferation and inflammation in RAFLS via targeting PIK3/NF‐κB pathway. miR‐124a is a promising therapeutic target for RA.  相似文献   

20.

Introduction  

Undifferentiated arthritis (UA) has a variable disease course; 40 to 50% of UA patients remit spontaneously, while 30% develop rheumatoid arthritis (RA). Identifying the UA patients who will develop RA is essential to initiate early disease-modifying anti-rheumatic drug (DMARD) therapy. Although the presence of bone erosions at baseline is predictive for a severe destructive disease course in RA, the prognostic importance of erosive joints for disease outcome in UA is unknown. This study evaluates the predictive value of erosive joints for the disease outcome in UA as measured by RA development and disease persistency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号