首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
There are many published studies presenting ethanol and acetone as PHAs‐poor solvents, where these two solvents are shown to dissolve <2% (w/v) of PHAs at low temperatures. In this study, the suitability of ethanol and acetone for the recovery of PHB at different temperatures (from room temperature to near boiling point) in Cupriavidus necator was investigated. Experiments were performed using response surface methodology to examine the effects of different temperatures and heating incubation times on recovery percentage using the two solvents. The highest recovery percentage (92.3%) and product purity (up to 99%) were obtained with ethanol‐assisted extraction at 76°C for 32 min of incubation time. Under these conditions the extracted PHB exhibited a molecular mass of 1.2 × 106. The present strategy showed that at temperatures near its boiling point, ethanol, as a nonhalogenated solvent, represents a good alternative to halogenated solvents, like chloroform, when PHB recovery is concerned. DSC analysis showed good thermal properties for ethanol‐ and acetone‐extracted biopolymers. GC and 1H NMR analysis confirmed the extracted biopolymer to be polyhydroxybutyrate of good purity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1480–1486, 2016  相似文献   

2.
Reduced downstream costs, together with high purity recovery of polyhydroxyalkanoate (PHA), will accelerate the commercialization of high quality PHA‐based products. In this work, a process was designed for effective recovery of the copolymer poly(hydroxybutyrate‐co‐hydroxyhexanoate) (P(HB‐co‐HHx)) containing high levels of HHx (>15 mol%) from Ralstonia eutropha biomass using non‐halogenated solvents. Several non‐halogenated solvents (methyl isobutyl ketone, methyl ethyl ketone, and butyl acetate and ethyl acetate) were found to effectively dissolve the polymer. Isoamyl alcohol was found to be not suitable for extraction of polymer. All PHA extractions were performed from both dry and wet cells at volumes ranging from 2 mL to 3 L using a PHA to solvent ratio of 2% (w/v). Ethyl acetate showed both high recovery levels and high product purities (up to 99%) when using dry cells as starting material. Recovery from wet cells, however, eliminates a biomass drying step during the downstream process, potentially saving time and cost. When wet cells were used, methyl isobutyl ketone (MIBK) was shown to be the most favorable solvent for PHA recovery. Purities of up to 99% and total recovery yields of up to 84% from wet cells were reached. During polymer recovery with either MIBK or butyl acetate, fractionation of the extracted PHA occurred, based on the HHx content of the polymer. PHA with higher HHx content (17–30 mol%) remained completely in solution, while polymer with a lower HHx content (11–16 mol%) formed a gel‐like phase. All PHA in solution could be precipitated by addition of threefold volumes of n‐hexane or n‐heptane to unfiltered PHA solutions. Effective recycling of the solvents in this system is predicted due to the large differences in the boiling points between solvent and precipitant. Our findings show that two non‐halogenated solvents are good candidates to replace halogenated solvents like chloroform for recovery of high quality PHA. Biotechnol. Bioeng. 2013; 110: 461–470. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Polyhydroxybutyrate (PHBs) have attracted much attention due to their biodegradability and biocompatibility properties. The main drawback to the commercial production of them is their high cost. The recovery of PHB from bacterial cytoplasm significantly increases total processing costs. Efficient, economical, and environment‐friendly extraction of PHB from cells is required for its industrial production. In the present study, several nonhalogenated organic solvents (ethylene carbonate, dimethyl sulfoxide, dimethyl formamide, hexane, propanol, methanol, and acetic acid) were examined for their efficacy regarding recovery at different temperatures from culture broth containing Cupriavidus necator cells. The highest recovery percentage (98.6%) and product purity (up to 98%) were seen to be those of ethylene carbonate‐assisted extraction at 150°C within 60 min of incubation time. Average molecular weight of the recovered PHB (1.3 × 106) was not significantly affected by the extraction solvent and conditions. The melting point of PHB extracted using ethylene carbonate was measured to be 176.2°C with an enthalpy of fusion of 16.8% and the corresponding degree of crystallinity of 59.2%. NMR and GC analyses confirmed that the extracted biopolymer was PHB. The presented strategy can help researchers to reduce the cost to obtain the final product.  相似文献   

4.
An integrated procedure for the recovery of polyhydroxybutyrate (PHB) produced by Cupriavidus necator based on the extraction with 1,2‐propylene carbonate was evaluated. The effect of temperature (100–145°C) and contact time (15–45 min), precipitation period, and biomass pretreatments (pH shock and/or thermal treatments) on PHB extraction efficiency and polymer properties was evaluated. The highest yield (95%) and purity (84%) were obtained with the combination of a temperature of 130°C and a contact time of 30 min, with a precipitation period of 48 h. Under these conditions, PHB had a molecular weight of 7.4×105, which was the highest value obtained. Lower values (2.2×105) were obtained for higher temperatures (145°C), while lower temperatures resulted in incomplete extraction yields (45–54%). No further yield improvement was achieved with the pH/heat pretreatments, but the polymer's molecular weight was increased to 1.3×106. The PHB physical properties were not significantly affected by any of the tested procedures, as shown by the narrow ranges obtained for the glass transition temperature (4.8–5.0°C), melting temperature (170.1–180.1°C), melting enthalpy (77.8–88.5 J/g) and crystallinity (55–62%). 1,2‐Propylene carbonate was shown to be an efficient solvent for the extraction of PHB from biomass. The precipitation procedure was found to highly influence the polymer recovery and its molecular weight. Although polymer molecular weight and purity were improved by applying pH/heat pretreatment to the biomass, the procedure involves the use of large amounts of chemicals, which increases the recovery costs and makes the process environmentally unfriendly.  相似文献   

5.
Glycerol, a byproduct of the biodiesel industry, can be used by bacteria as an inexpensive carbon source for the production of value‐added biodegradable polyhydroxyalkanoates (PHAs). Burkholderia cepacia ATCC 17759 synthesized poly‐3‐hydroxybutyrate (PHB) from glycerol concentrations ranging from 3% to 9% (v/v). Increasing the glycerol concentration results in a gradual reduction of biomass, PHA yield, and molecular mass (Mn and Mw) of PHB. The molecular mass of PHB produced utilizing xylose as a carbon source is also decreased by the addition of glycerol as a secondary carbon source dependent on the time and concentration of the addition. 1H‐NMR revealed that molecular masses decreased due to the esterification of glycerol with PHB resulting in chain termination (end‐capping). However, melting temperature and glass transition temperature of the end‐capped polymers showed no significant difference when compared to the xylose‐based PHB. The fermentation was successfully scaled up to 200 L for PHB production and the yield of dry biomass and PHB were 23.6 g/L and 7.4 g/L, respectively. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
Enzymatic synthesis of ascorbyl undecylenate, an unsaturated fatty acid ester of ascorbic acid, was reported with biomass‐derived 2‐methyltetrahydrofuran (MeTHF) as the cosolvent. Of the immobilized lipases tested, Candida antarctica lipase B (CAL‐B) showed the highest activity for enzymatic synthesis of ascorbyl undecylenate. Effect of reaction media on the enzymatic reaction was studied. The cosolvent mixture, t‐butanol‐MeTHF (1:4, v/v) proved to be the optimal medium, in which not only ascorbic acid had moderate solubility, but also CAL‐B showed a high activity, thus addressing the major problem of the solvent conflict for dissolving substrate and keeping satisfactory enzyme activity. In addition, the enzyme was much more stable in MeTHF and t‐butanol‐MeTHF (1:4) than in previously widely used organic solvents, t‐butanol, 2‐methyl‐2‐butanol, and acetone. The much higher initial reaction rate in this cosolvent mixture may be rationalized by the much lower apparent activation energy of this enzymatic reaction (26.6 vs. 38.1–39.1 kJ/mol) and higher enzyme catalytic efficiency (Vmax/Km, 8.4 vs. 1.3–1.4 h?1). Ascorbyl undecylenate was obtained with the yields of 84–89% and 6‐regioselectivity of >99% in t‐butanol‐MeTHF (1:4) at supersaturated substrate concentrations (60 and 100 mM) after 5–8 h. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1005–1011, 2014  相似文献   

7.
A rapid and efficient microwave-assisted extraction (MAE) process for the selective extraction of embelin from Embelia ribes was developed. Solvent selection, microwave energy input and solid loading were optimized. The rate of extraction and purity of embelin depended upon the solvent used and exposure time to microwaves. Maximum MAE was achieved in acetone with total yield of 92% (w/w) embelin with 90% (w/w) purity with 1% (w/v) raw material loading at 150 W power level in 80 s. Non-polar solvents, such as hexane and dichloromethane, were not effective for the selective extraction of embelin.  相似文献   

8.
Saccharomyces cerevisiae erg9 mutants blocked at squalene synthase require ergosterol for growth and produce E,E‐farnesol. Typically, at least half the amount of farnesol remains cell associated. Practically insoluble in water, farnesol can be extracted from production cultures of the erg9 mutants using either methanol/hexane or poly(styrene‐co‐divinylbenzene) beads. The first method consumes more solvents and requires centrifugation to clear an interface emulsion. The second method uses 50% less solvent and the beads can be used repeatedly for extraction. The solvent‐free crude extract from the beads extraction contained higher concentration of farnesol (76–77%) than that from the solvent extraction (61–65%). Farnesol was obtained after normal‐phase chromatography in high overall recovery (94%) and purity (99%). © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)‐3‐hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield‐potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing β‐ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl‐CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB‐producing sugarcane containing the β‐ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2 × 106 Da. These results are a major step forward in engineering a high biomass C4 grass for the commercial production of PHB.  相似文献   

11.
Currently, there are many reports in the literature regarding technological methods for paclitaxel purification. However, there have been few reports on the purification of paclitaxel using a micellar system. This method is based on the transfer of paclitaxel within the crude extract to an aqueous surfactant solution as a micelle, allowing the use of organic solvents to be used for the removal of lipids and non-polar impurities. In this study, we optimized the important process parameters of micellar extraction to obtain a high purity and yield of paclitaxel in a pre-purification step. The optimal surfactant (N-cetylpyridinium chloride, CPC) concentration, initial crude paclitaxel concentration, organic solvents (methylt-butyl ether/hexane) ratio, extraction temperature, and extraction time were 7.5% (w/v), 16.4 mg/mL, 1.5/1 (v/v), 25°C, and 30 min, respectively. The crude extracts from the liquid-liquid extracts were efficiently pre-purified by micellar extraction, increasing in purity from 6% to over 21%, with a yield of 92%. Overall, the use of micellar extraction in the pre-purification process allowed for rapid and efficient separation of paclitaxel from interfering compounds, and dramatically increased the yield and purity of the crucle paclitael for subsequent purification steps.  相似文献   

12.
Haloperoxidases are useful oxygenases involved in halogenation of a range of water‐insoluble organic compounds and can be used without additional high‐cost cofactors. In particular, organic solvent‐stable haloperoxidases are desirable for enzymatic halogenations in the presence of organic solvents. In this study, we adopted a directed evolution approach by error‐prone polymerase chain reaction to improve the organic solvent‐stability of the homodimeric BPO‐A1 haloperoxidase from Streptomyces aureofaciens. Among 1,000 mutant BPO‐A1 haloperoxidases, an organic solvent‐stable mutant OST48 with P123L and P241A mutations and a high active mutant OST959 with H53Y and G162R mutations were selected. The residual activity of mutant OST48 after incubation in 40% (v/v) 1‐propanol for 1 h was 1.8‐fold higher than that of wild‐type BPO‐A1. In addition, the OST48 mutant showed higher stability in methanol, ethanol, dimethyl sulfoxide, and N,N‐dimethylformamide than wild‐type BPO‐A1 haloperoxidase. Moreover, after incubation at 80°C for 1 h, the residual activity of mutant OST959 was 4.6‐fold higher than that of wild‐type BPO‐A1. Based on the evaluation of single amino acid‐substituted mutant models, stabilization of the hydrophobic core derived from P123L mutation and increased numbers of hydrogen bonds derived from G162R mutation led to higher organic solvent‐stability and thermostability, respectively. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:917–924, 2015  相似文献   

13.
The enzymatic synthesis of N‐acetyl‐lactosamine (LacNAc) by the transgalactosylation of N‐acetyl‐D ‐glucosamine (GlcNAc), catalyzed by the β‐galactosidase from Bacillus circulans (BcβGal), was studied in hydro‐organic media, starting from o‐nitrophenyl‐β‐D ‐galactopyranoside (oNPG) as a galactosyl donor. Thermal stability and synthesis activity of BcβGal were shown to depend on the organic solvent polarity, characterized by its Log P value. BcβGal was thus most stable in 10% (v/v) t‐BuOH, an organic solvent found to have a stabilizing and/or weakly denaturing property, which was confirmed for high t‐BuOH concentrations. In the same manner, the optimal synthesis yield increased as the Log P value of the organic solvent increased. The best results were obtained for reactions carried out in 10% (v/v) pyridine or 2‐methyl‐2‐butanol, which gave 47% GlcNAc transgalactosylation yield based on starting oNPG, of which 23% (11 mM; 4.3 g/L) consisted in LacNAc synthesis. Furthermore, it was also established that both the GlcNAc transgalactosylation yield and the enzyme regioselectivity depended on the percentage of organic solvent used, the optimal percentage varying from 10 to 40% (v/v), depending on the solvent. This phenomenon was found to correlate mainly with the thermodynamic activity of water (aw) in the aqueous organic solvent mixture, which was found to be optimal when close to 0.96, whatever the organic solvent used. Finally, this study highlighted the fact that the regioselectivity of BcβGal for 1‐4 linkage formation could be advantageously managed by controlling the aw parameter. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
Aims: To isolate and characterize new bacteria capable of tolerating high concentrations of organic solvents at high temperature. Methods and Results: A solvent‐tolerant, thermophilic bacterium was isolated from hot spring samples at 55°C. The strain PGDY12 was characterized as a Gram‐positive bacterium. It was able to tolerate 100% solvents, such as toluene, benzene and p‐xylene on plate overlay and high concentrations of these solvents in liquid cultures. A comparison of growth showed that 0·2% (v/v) benzene and 0·15% (v/v) p‐xylene were capable of enhancing the final cell yields. Transmission electron micrographs showed the incrassation of electron‐transparent intracellular material and the distorted cytoplasm in case of the cells grown in toluene. A phylogenetic analysis based on 16S rRNA sequence data indicated that the strain PGDY12 was member of the genus Anoxybacillus. Conclusions: The thermophilic, Gram‐positive Anoxybacillus sp. PGDY12 exhibited a unique and remarkable ability to tolerate solvents at 55°C. Significance and Impact of the Study: The solvent tolerance properties are less known in thermophilic bacteria. The Anoxybacillus sp. PGDY12 is the first strictly thermophilic bacterium able to tolerate a broad range of solvents. This strain is a promising candidate for use as a high temperature biocatalyst in the biotechnological applications.  相似文献   

15.
《Process Biochemistry》1999,34(2):153-157
A new method for the recovery of poly(3-hydroxybutyrate) (PHB) from Alcaligenes eutrophus was reported. This process involved the use of a surfactant–chelate aqueous solution. The key factors that influenced the purity, recovery rate and Mv of recovered PHB were investigated. The purity and recovery rate were determined by the amount of surfactant, the ratio of chelate to dry biomass, pH value, temperature and treatment time, whereas the Mv was affected by pH value and temperature. The optimal recovery conditions were a 0·12:1 surfactant-to-dry biomass ratio, a 0·08:1 chelate-to-dry biomass ratio, a pH value of 13, a 50°C temperature and a 10-min treatment time. Under such conditions, a purity of 98·7%, a recovery rate of 93·3% and a Mv of 316000 were obtained. The original Mv was 402000.  相似文献   

16.
Optimized hydrolysis of lignocellulosic waste biomass is essential to achieve the liberation of sugars to be used in fermentation process. Ionic liquids (ILs), a new class of solvents, have been tested in the pretreatment of cellulosic materials to improve the subsequent enzymatic hydrolysis of the biomass. Optimized application of ILs on biomass is important to advance the use of this technology. In this research, we investigated the effects of using 1‐butyl‐3‐methylimidazolium acetate ([bmim][Ac]) on the decomposition of soybean hull, an abundant cellulosic industrial waste. Reaction aspects of temperature, incubation time, IL concentration, and solid load were optimized before carrying out the enzymatic hydrolysis of this residue to liberate fermentable glucose. Optimal conditions were found to be 75°C, 165 min incubation time, 57% (mass fraction) of [bmim][Ac], and 12.5% solid loading. Pretreated soybean hull lost its crystallinity, which eased enzymatic hydrolysis, confirmed by Fourier Transform Infrared analysis. The enzymatic hydrolysis of the biomass using an enzyme complex from Penicillium echinulatum liberated 92% of glucose from the cellulose matrix. The hydrolysate was free of any toxic compounds, such as hydroxymethylfurfural and furfural. The obtained hydrolysate was tested for fermentation using Candida shehatae HM 52.2, which was able to convert glucose to ethanol at yields of 0.31. These results suggest the possible use of ILs for the pretreatment of some lignocellulosic waste materials, avoiding the formation of toxic compounds, to be used in second‐generation ethanol production and other fermentation processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:312–320, 2016  相似文献   

17.
Solvent effects on the morphology of diketopyrrolopyrrole (DPP)‐based low band gap polymer (PDPPBT):phenyl‐C71‐butyric acid methyl ester (PC71BM) blends are studied systematically using a mixture of a non‐aromatic polar primary solvent with high boiling point (b.p.) secondary solvents of increasing polarities. An unfavorable solvent‐PC71BM interaction, due to a polarity mismatch, leads to significantly different morphology, also affecting the growth process of polymer crystallites. Non‐aromatic polar solvent produces large PC71BM aggregates that increase in size with the addition of non‐polar secondary solvents. The size scales of the aggregates decrease markedly when polar solvents are instead used as the secondary solvents. This processing method fundamentally changes the behavior of phase separation, creating a percolated fibrillar type network structure. Moreover, polar secondary solvents with lower vapor pressures reduce the interfibrillar distances that enhance the device performance even more. Power conversion efficiencies (PCE) of 0.03% to 5% are obtained, depending on the solvent system used.  相似文献   

18.
The effect of solvents of varying polarity on the absorption and fluorescence emission of the Schiff base, 2‐{[3‐(1H‐benzimidazole‐2‐yl) phenyl]carbonoimidoyl}phenol, was studied using Lippert‐Mataga bulk polarity function, Reichardt's microscopic solvent polarity parameter and Kamlet's multiple linear regression approach. The spectral properties follow Reichardt's microscopic solvent polarity parameter better than Lippert‐Mataga bulk polarity parameter, indicating the presence of both general solute–solvent interactions and specific interactions. Catalan's multiple linear regression approach indicates the major role of solvent polarizability/dipolarity influence compared with solvent acidity or basicity. The solvatochromic effect was utilized to calculate the dipole moments of ground and excited states of the Schiff base using different methods. Bathochromic shift in the emission spectrum and the increase in dipole moment in the excited state signifies the intramolecular charge transfer character in the emitting singlet state. Fluorescence quenching by aniline was also studied in 1,4‐dioxane and n‐butanol, and the results were analyzed using sphere of action static quenching and finite sink approximation models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The application of ionic liquids as solvents for transesterification of prochiral pirymidine acyclonucleoside using lipase (EC 3.1.1.3) Amano PS from Burkholderia cepacia (BCL) is reported. The effect of using medium reaction, acyl group donor, and temperature on the activity and enantioselectivity of BCL was studied. From the investigated ionic solvents, the hydrophobic ionic liquid [BMIM]PF6] was the preferred medium for enzymatic reactions. However, the best result was obtained in the mixture [BMIM][PF6]:TBME (1:1 v/v) at 50°C. Enzyme activity and selectivity in [BMIM][PF6]:TBME (1:1 v/v) was slightly higher in than in conventional organic solvents (for example, TBME), and in this condition, good activity and enantioselectivity were associated with unique properties of ionic liquid such as hydrophobicity and high polarity. Independently of solvents, monester of (R)‐configuration was obtained in excess. Under optimal conditions, desymmetrization of the prochiral compound using different acyl donors was performed. If vinyl butyrate was used as the acylating agent, BCL completely selectively acylated enantiotopic hydroxyl groups.  相似文献   

20.
Lipid extraction is a critical step in the downstream processing of biodiesel production from microalgae. Solvent extraction using mixtures of non-polar and polar solvents is one of the most well-known processes for this purpose. Hexane is the most common solvent of choice for large-scale lipid extractions due to its technical and economic advantages, especially its high selectivity toward lipids and low cost. In this study, extractions using mixtures of hexane and polar solvents were evaluated for their performance in order to develop a more efficient method for large-scale lipid extraction from microalgae. The combination of hexane and methanol resulted in the highest fatty acid methyl ester (FAME) yield for lipids from Tetraselmis sp. The effects of extraction conditions, including proportions of methanol to hexane, ratios of total solvent volume to dry biomass, and extraction time, on extraction yields were evaluated to determine optimum conditions providing higher lipid and FAME yields. The optimal conditions were as follows: proportion of hexane to methanol of 1:1, ratio of total solvent volume to dry biomass of 10 mL/g, and extraction time of 120 min. Finally, the selected solvent mixture and optimal conditions were applied to larger scale extraction experiments with scale-up factors of 10, 50, and 100. FAME yields of large-scale extractions were almost completely consistent with increasing scale-up factors. The results of this study suggest that a hexane and methanol mixture is a promising solvent for large-scale lipid extraction from microalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号