首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Viral filtration is an expensive regulatory requirement in downstream processing of monoclonal antibodies (mAbs). This process step is typically operated with an overdesigned filter in order to account for any batch to batch variability in the filter, as well as the feed characteristics. Here, we propose a simple, six‐parameter mechanistic model for viral filtration where three parameters are membrane‐specific while the other three depend on feed characteristics and membrane‐feed interactions. Viruses are considered as passive particles which are retained by the membrane on the basis of size exclusion. The model envisages that the viral filter contains two kind of pores: virus‐retentive, small‐sized pores and non‐retentive, large‐sized pores. The small‐sized pores get blocked during filtration resulting in decrease in active membrane area, while the large‐sized pores get constricted during filtration. The length of constricted part increases during filtration and contributes to increase in hydraulic resistance of the filter. Rate of these processes (blocking and constriction) are assumed to be proportional to the instantaneous rate of retention of the viral particles. The general nature of the model is validated with the experimental data on viral filtration for four different commercial membranes used in biotech industries as well as different model viruses. The proposed model has been demonstrated to describe the behavior of filters with very good accuracy. The best‐fit model parameter values indicate about the various phenomena that are responsible for differences in the behavior of the membranes as well as change in retention and flux with feed concentration. The proposed model can be used for improving design of virus filters as well as in appropriate sizing of the filters during processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1538–1547, 2017  相似文献   

2.
Several recent studies have reported a decline in virus retention during virus challenge filtration experiments, although the mechanism(s) governing this phenomenon for different filters remains uncertain. Experiments were performed to evaluate the retention of PP7 and PR772 bacteriophage through Ultipor VF Grade DV20 virus filters during constant pressure filtration. While the larger PR772 phage was fully retained under all conditions, a 2‐log decline in retention of the small PP7 phage was observed at high throughputs, even under conditions where there was no decline in filtrate flux. In addition, prefouling the membrane with an immunoglobulin G solution had no effect on phage retention. An internal polarization model was developed to describe the decline in phage retention arising from the accumulation of phage in the upper (reservoir) layer within the filter which increases the challenge to the lower (rejection) layer. Independent support for this internal polarization phenomenon was provided by confocal microscopy of fluorescently labeled phage within the membrane. The model was in good agreement with phage retention data over a wide range of phage titers, confirming that virus retention is throughput dependent and supporting current recommendations for virus retention validation studies. These results provide important insights into the factors governing virus retention by membrane filters and their dependence on the underlying structure of the virus filter membrane. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:856–863, 2014  相似文献   

3.
Virus removal by filter membranes is regarded as a robust and efficient unit operation, which is frequently applied in the downstream processing of biopharmaceuticals. The retention of viruses by virus filtration membranes is predominantly based on size exclusion. However, recent results using model membranes and bacteriophage PP7 point to the fact that virus retention can also significantly be influenced by adsorptive interactions between virus, product molecules, and membranes. Furthermore, the impact of flow rate and flow interruptions on virus retention have been studied and responsible mechanisms discussed. The aim of this investigation was to gain a holistic understanding of the underlying mechanisms for virus retention in size exclusion membranes as a function of membrane structure and membrane surface properties, as well as flow and solution conditions. The results of this study contribute to the differentiation between size exclusion and adsorptive effects during virus filtration and broaden the current understanding of mechanisms related to virus breakthroughs after temporary flow interruptions. Within the frame of a Design of Experiments approach it was found that the level of retention of virus filtration membranes was mostly influenced by the membrane structure during typical process-related flow conditions. The retention performance after a flow interruption was also significantly influenced by membrane surface properties and solution conditions. While size exclusion was confirmed as main retention mechanism, the analysis of all results suggests that especially after a flow interruption virus retention can be influenced by adsorptive effects between the virus and the membrane surface. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2747, 2019.  相似文献   

4.
Parvovirus retentive filters that assure removal of viruses and virus‐like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size‐based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass‐throughput values of 7.3, 26.4, and 76.2 kg/m2 were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass‐throughput values of 73, 137, and 192 kg/m2 were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large‐scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small‐scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large‐scale filter capacity. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
Virus filtration is a robust size-based technique that can provide the high level of viral clearance required for the production of mammalian-derived biotherapeutics such as monoclonal antibodies. Several studies have shown that the retention characteristics of some, but not all, virus filters can be significantly affected by membrane fouling, but there have been no direct measurements of how protein fouling might alter the location of virus capture within these membranes. The objective of this study was to directly examine the effect of protein fouling by human immunoglobulin G (IgG) on virus capture within the Viresolve® Pro and Viresolve® NFP membranes by scanning electron microscopy using different size gold nanoparticles. IgG fouling shifted the capture location of 20 nm gold nanoparticles further upstream within the Viresolve® Pro filter due to the constriction and/or blockage of the pores in the virus retentive region of the filter. In contrast, IgG fouling had no measurable effect on the capture of 20 nm nanoparticles in the Viresolve® NFP membrane, and IgG fouling had no effect on the capture of larger 40 and 100 nm nanoparticles in either membrane. These results provide important insights into how protein fouling alters the virus retention characteristics of different virus filters.  相似文献   

6.
Virus filtration process is used to ensure viral safety in the biopharmaceutical downstream processes with high virus removal capacity (i.e., >4 log10). However, it is still constrained by protein fouling, which results in reduced filtration capacity and possible virus breakthrough. This study investigated the effects of protein fouling on filtrate flux and virus breakthrough using commercial membranes that had different symmetricity, nominal pore size, and pore size gradients. Flux decay tendency due to protein fouling was influenced by hydrodynamic drag force and protein concentration. As the results of prediction with the classical fouling model, standard blocking was suitable for most virus filters. Undesired virus breakthrough was observed in the membranes having relatively a large pore diameter of the retentive region. The study found that elevated levels of protein solution reduced virus removal performance. However, the impact of prefouled membranes was minimal. These findings shed light on the factors that influence protein fouling during the virus filtration process of biopharmaceutical production.  相似文献   

7.
Viral filtration is routinely incorporated into the downstream purification processes for the production of biologics produced in mammalian cell cultures (MCC) to remove potential viral contaminants. In recent years, the use of retentive filters designed for retaining parvovirus (~20 nm) has become an industry standard in a conscious effort to further improve product safety. Since retentive filters remove viruses primarily by the size exclusion mechanism, it is expected that filters designed for parvovirus removal can effectively clear larger viruses such as retroviruses (~100 nm). In an attempt to reduce the number of viral clearance studies, we have taken a novel approach to demonstrate the feasibility of claiming modular retrovirus clearance for Asahi Planova 20N filters. Porcine parvovirus (PPV) and xenotropic murine leukemia virus (XMuLV) were co‐spiked into six different feedstreams and then subjected to laboratory scale Planova 20N filtration. Our results indicate that Planova 20N filters consistently retain retroviruses and no retrovirus has ever been detected in the filtrates even when significant PPV breakthrough is observed. Based on the data from multiple in‐house viral validation studies and the results from the co‐spiking experiments, we have successfully claimed a modular retrovirus clearance of greater than 6 log10 reduction factors (LRF) to support clinical trial applications in both USA and Europe. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:79–85, 2014  相似文献   

8.
In virus clearance study (VCS) design, the amount of virus loaded onto the virus filters (VF) must be carefully controlled. A large amount of virus is required to demonstrate sufficient virus removal capability; however, too high a viral load causes virus breakthrough and reduces log reduction values. We have seen marked variation in the virus removal performance for VFs even with identical VCS design. Understanding how identical virus infectivity, materials and operating conditions can yield such different results is key to optimizing VCS design. The present study developed a particle number-based method for VCS and investigated the effects on VF performance of discrepancies between apparent virus amount and total particle number of minute virus of mice. Co-spiking of empty and genome-containing particles resulted in a decrease in the virus removal performance proportional to the co-spike ratio. This suggests that empty particles are captured in the same way as genome-containing particles, competing for retention capacity. In addition, between virus titration methods with about 2.0 Log10 difference in particle-to-infectivity ratios, there was a 20-fold decrease in virus retention capacity limiting the throughput that maintains the required LRV (e.g., 4.0), calculated using infectivity titers. These findings suggest that ignoring virus particle number in VCS design can cause virus overloading and accelerate filter breakthrough. This article asserts the importance of focusing on virus particle number and discusses optimization of VCS design that is unaffected by virological characteristics of evaluation systems and adequately reflect the VF retention capacity.  相似文献   

9.
The threat to human health and fisheries resources due to blooms of the toxic dinoflagellate Karenia brevis has lead to widespread public concern and calls for continuous monitoring of coastal waters for this organism. Here, a rapid and sensitive photopigment-based monitoring approach is described that incorporates refinements to standard filtration and analytical methods. This method uses the biomarker pigment gyroxanthin-diester contained in cells of some gymnodiniod species including K. brevis. Investigations of the retention efficiencies of five filter types for gyroxanthin from natural blooms of K. brevis showed no significant differences between GF/F, GF/C, 934-AH, GF/A or GF/D filters. Retention efficiencies were generally greater than 98% of cells added, indicating that the larger nominal pore size filters may be used safely for sample collection, reducing overall filtration times for large volumes of water. Simulated bloom experiments using cultures of K. brevis added to unfiltered water from Galveston Bay showed that retention of gyroxanthin on GF/D filters was significantly lower than on other filter types. There were significant interactions (p < 0.01) between filter type and cell density for the variables gyroxanthin, gyroxanthin chl a–1 and gyroxanthin cell–1, suggesting that the performance of the different filter types was dependent on cell density. Retention efficiencies for the simulated blooms ranged between >99% of cells retained and <30% of cells retained (greatest losses were for the GF/D filters). Combined results of natural and simulated blooms indicated that GF/C, 934-AH or GF/A filters gave the best retention efficiency with the fastest filtration times. Sample processing times were also improved by modifying the flow gradients in an existing HPLC protocol allowing the analysis of 106 samples in 24 h. The resulting protocol is suitable for incorporation into routine water quality monitoring programs, and would greatly facilitate the early detection and tracking of K. brevis blooms in coastal waters.  相似文献   

10.
Virus filtration can provide a robust method for removal of adventitious parvoviruses in the production of biotherapeutics. Although virus filtration is typically thought to function by a purely size‐based removal mechanism, there is limited data in the literature indicating that virus retention is a function of solution conditions. The objective of this work was to examine the effect of solution pH and ionic strength on virus retention by the Viresolve® NFP membrane. Data were obtained using the bacteriophage ?X174 as a model virus, with retention data complemented by the use of confocal microscopy to directly visualize capture of fluorescently labeled ?X174 within the filter. Virus retention was greatest at low pH and low ionic strength, conditions under which there was an attractive electrostatic interaction between the negatively charged membrane and the positively charged phage. In addition, the transient increase in virus transmission seen in response to a pressure disruption at pH 7.8 and 10 was completely absent at pH 4.9, suggesting that the trapped virus are unable to overcome the electrostatic attraction and diffuse out of the pores when the pressure is released. Further confirmation of this physical picture was provided by confocal microscopy. Images obtained at pH 10 showed the migration of previously captured phage; this phenomenon was absent at pH 4.9. These results provide important new insights into the factors governing virus retention using virus filtration membranes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1280–1286, 2015  相似文献   

11.
The suspension-feeding cichlids Oreochromis aureus (blue tilapia) and Oreochromis esculentus (ngege tilapia) are able to selectively retain small food particles. The gill rakers and microbranchiospines of these species have been assumed to function as filters. However, surgical removal of these oral structures, which also removed associated mucus, did not significantly affect the total number of 11–200 μm particles ingested by the fish. This result supports the hypothesis that the branchial arch surfaces themselves play an important role in crossflow filtration. Both species selectively retained microspheres greater than 50 μm with gill rakers and microbranchiospines intact as well as removed, demonstrating that neither these structures nor mucus are necessary for size selectivity to occur during biological crossflow filtration. After removal of the gill rakers and microbranchiospines, O. esculentus retained significantly more microspheres 51–70 μm in diameter and fewer 91–130 μm microspheres compared to retention with intact structures, but the particle size selectivity of O. aureus was not affected significantly. These results support conclusions from previous computational fluid dynamics simulations indicating that particle size can have marked effects on particle trajectory and retention inside the fish oropharyngeal cavity during crossflow filtration. The substantial inter-individual variability in particle retention by suspension-feeding fish is an unexplored area of research with the potential to increase our understanding of the factors influencing particle retention during biological filtration.  相似文献   

12.
Morphological characteristics of the forestomach, as well as reports of a natural diet that mostly excludes monocots, suggest that dikdiks (Madoqua spp.), among smallest extant ruminants, should have a 'moose-type' forestomach physiology characterised by a low degree of selective particle retention. We tested this assumption in a series of feeding experiments with 12 adult Phillip's dikdiks (Madoqua saltiana phillipsi) on three different intake levels per animal, using cobalt-EDTA as a solute marker and a 'conventional' chromium-mordanted fibre (<2 mm; mean particle size 0.63 mm) marker for the particle phase. Body mass had no influence on retention measurements, whereas food intake level clearly had. Drinking water intake was not related to the retention of the solute marker. In contrast to our expectations, the particle marker was retained distinctively longer than the solute marker. Comparisons with results in larger ruminants and with faecal particle sizes measured in dikdiks suggested that in these small animals, the chosen particle marker was above the critical size threshold, above which particle delay in the forestomach is not only due to selective particle retention (as compared to fluids), but additionally due to the ruminal particle sorting mechanism that retains particles above this threshold longer than particles below this threshold. A second study with a similar marker of a lower mean particle size (0.17 mm, which is below the faecal particle size reported for dikdiks) resulted in particle and fluid retention patterns similar to those documented in other 'moose-type' ruminants. Nevertheless, even this smaller particle marker yielded retention times that were longer than those predicted by allometric equations based on quarter-power scaling, providing further support for observations that small ruminants generally achieve longer retention times and higher digestive efficiencies than expected based on their body size.  相似文献   

13.
Virus filtration (VF) is a key step in an overall viral clearance process since it has been demonstrated to effectively clear a wide range of mammalian viruses with a log reduction value (LRV) > 4. The potential to achieve higher LRV from virus retentive filters has historically been examined using bacteriophage surrogates, which commonly demonstrated a potential of > 9 LRV when using high titer spikes (e.g. 1010 PFU/mL). However, as the filter loading increases, one typically experiences significant decreases in performance and LRV. The 9 LRV value is markedly higher than the current expected range of 4‐5 LRV when utilizing mammalian retroviruses on virus removal filters (Miesegaes et al., Dev Biol (Basel) 2010;133:3‐101). Recent values have been reported in the literature (Stuckey et al., Biotech Progr 2014;30:79‐85) of LRV in excess of 6 for PPV and XMuLV although this result appears to be atypical. LRV for VF with therapeutic proteins could be limited by several factors including process limits (flux decay, load matrix), virus spike level and the analytical methods used for virus detection (i.e. the Limits of Quantitation), as well as the virus spike quality. Research was conducted using the Xenotropic‐Murine Leukemia Virus (XMuLV) for its direct relevance to the most commonly cited document, the International Conference of Harmonization (ICH) Q5A (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1999) for viral safety evaluations. A unique aspect of this work is the independent evaluation of the impact of retrovirus quality and virus spike level on VF performance and LRV. The VF studies used XMuLV preparations purified by either ultracentrifugation (Ultra 1) or by chromatographic processes that yielded a more highly purified virus stock (Ultra 2). Two monoclonal antibodies (Mabs) with markedly different filtration characteristics and with similar levels of aggregate (<1.5%) were evaluated with the Ultra 1 and Ultra 2 virus preparations utilizing the Planova 20 N, a small virus removal filter. Impurities in the virus preparation ultimately limited filter loading as measured by determining the volumetric loading condition where 75% flux decay is observed versus initial conditions (V75). This observation occurred with both Mabs with the difference in virus purity more pronounced when very high spike levels were used (>5 vol/vol %). Significant differences were seen for the process performance over a number of lots of the less‐pure Ultra 1 virus preparations. Experiments utilizing a developmental lot of the chromatographic purified XMuLV (Ultra 2 Development lot) that had elevated levels of host cell residuals (vs. the final Ultra 2 preparations) suggest that these contaminant residuals can impact virus filter fouling, even if the virus prep is essentially monodisperse. Process studies utilizing an Ultra 2 virus with substantially less host cell residuals and highly monodispersed virus particles demonstrated superior performance and an LRV in excess of 7.7 log10. A model was constructed demonstrating the linear dependence of filtration flux versus filter loading which can be used to predict the V75 for a range of virus spike levels conditions using this highly purified virus. Fine tuning the virus spike level with this model can ultimately maximize the LRV for the virus filter step, essentially adding the LRV equivalent of another process step (i.e. protein A or CEX chromatography). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:135–144, 2015  相似文献   

14.
Virus clearance by depth filtration has not been well‐understood mechanistically due to lack of quantitative data on filter charge characteristics and absence of systematic studies. It is generally believed that both electrostatic interactions and sized based mechanical entrapment contribute to virus clearance by depth filtration. In order to establish whether the effectiveness of virus clearance correlates with the charge characteristics of a given depth filter, a counter‐ion displacement technique was employed to determine the ionic capacity for several depth filters. Two depth filters (Millipore B1HC and X0HC) with significant differences in ionic capacities were selected and evaluated for their ability to eliminate viruses. The high ionic capacity X0HC filter showed complete porcine parvovirus (PPV) clearance (eliminating the spiked viruses to below the limit of detection) under low conductivity conditions (≤2.5 mS/cm), achieving a log10 reduction factor (LRF) of > 4.8. On the other hand, the low ionic capacity B1HC filter achieved only ~2.1–3.0 LRF of PPV clearance under the same conditions. These results indicate that parvovirus clearance by these two depth filters are mainly achieved via electrostatic interactions between the filters and PPV. When much larger xenotropic murine leukemia virus (XMuLV) was used as the model virus, complete retrovirus clearance was obtained under all conditions evaluated for both depth filters, suggesting the involvement of mechanisms other than just electrostatic interactions in XMuLV clearance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:431–437, 2015  相似文献   

15.
The need for purification of biomolecules extends to larger bioparticles as well. For example, virus purification is required for production of many vaccines and gene delivery vectors, and understanding virus removal in porous media is also important in downstream processing of therapeutic proteins and in purification of water in soils. A convective entrapment mechanism for retention of large bioparticles is discussed here based on retention of such bioparticles in pore constrictions at high enough flow rates, even under non‐binding conditions. A simple equation to predict whether such entrapment is expected to occur in a given system is derived based on a Péclet number that is proportional to the flow rate and to the cube of the bioparticle diameter. To test the theory, adenovirus was spiked onto chromatographic beds. As expected from the theory, under non‐interacting conditions a progressively larger amount of virus becomes trapped with increasing flow rate. The entrapment is reversible upon flow rate reduction, which, within the proposed model, is based on the possibility of diffusive escape from pore constrictions. This mechanism can be exploited for virus purification or removal, and the theory is also consistent with the anecdotal evidence that monoliths and membranes are more difficult to clean than conventional chromatographic beds, especially at high flow rates. Biotechnol. Bioeng. 2009; 104: 127–133 © 2009 Wiley Periodicals, Inc.  相似文献   

16.
17.
Recently, particle concentration and filtration using inertial microfluidics have drawn attention as an alternative to membrane and centrifugal technologies for industrial applications, where the target particle size varies between 1 µm and 500 µm. Inevitably, the bigger particle size (>50 µm) mandates scaling up the channel cross‐section or hydraulic diameter (DH > 0.5 mm). The Dean‐coupled inertial focusing dynamics in spiral microchannels is studied broadly; however, the impacts of secondary flow on particle migration in a scaled‐up spiral channel is not fully elucidated. The mechanism of particle focusing inside scaled‐up rectangular and trapezoidal spiral channels (i.e., 5–10× bigger than conventional microchannels) with an aim to develop a continuous and clog‐free microfiltration system for bioprocessing is studied in detail. Herein, a unique focusing based on inflection point without the aid of sheath flow is reported. This new focusing mechanism, observed in the scaled‐up channels, out‐performs the conventional focusing scenarios in the previously reported trapezoidal and rectangular channels. Finally, as a proof‐of‐concept, the utility of this device is showcased for the first time as a retention system for a cell–microcarrier (MC) suspension culture.  相似文献   

18.
Ruminant species differ in the degree that their rumen contents are stratified but are similar insofar that only very fine particles are passed from the forestomach to the lower digestive tract. We investigated the passage kinetics of fluid and particle markers (2, 10 and 20 mm) in fistulated cattle (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces) on different diets. The distribution of dry matter in the rumen and the viscosity of rumen fluids suggested that the rumen contents were more stratified in muskoxen than moose. Correspondingly, as in previous studies, the species differed in the ratio of mean retention times of small particles to fluids in the reticulorumen, which was highest in cattle (2.03) and muskoxen (1.97–1.98), intermediate in reindeer (1.70) and lowest in moose (0.98–1.29). However, the ratio of large to small particle retention did not differ between the species, indicating similarity in the efficiency of the particle sorting mechanism. Passage kinetics of the two largest particle classes did not differ, indicating that particle retention is not a continuous function of particle size but rather threshold-dependent. Overall, the results suggest that fluid flow through the forestomach differs between ruminant species. A lower relative fluid passage, such as in moose, might limit species to a browse-based dietary niche, whereas a higher relative fluid passage broadens the dietary niche options and facilitates the inclusion of, or specialization on, grass. The function of fluid flow in the ruminant forestomach should be further investigated.  相似文献   

19.
Abstract The retention of algal picoplankton by Nuclepore polycarbonate filters of 0.2, 1.0, 2.0 and 3.0 μm pore size was tested in 2 marine and 3 freshwater sites. When 1 μm Nuclepore filters were used, the percentage of the total cyanobacterial cells passing the filter varied between sites and with increasing depth within sites. As much as 99% of the Synechococcus -like cells was retained by a 1 μm filter. This could lead to an underestimation of the picoplanktonic contribution or, more seriously, an apparent distribution pattern that is an artifact of the choice of filter pore size. Filter retention was also dependent on vaccum pressure during filtration. This study emphasizes the need for direct observation of picoplankton numbers in filter fractionation studies.  相似文献   

20.
Alternating tangential flow (ATF) filtration has been used with success in the Biopharmaceutical industry as a lower shear technology for cell retention with perfusion cultures. The ATF system is different than tangential flow filtration; however, in that reverse flow is used once per cycle as a means to minimize fouling. Few studies have been reported in the literature that evaluates ATF and how key system variables affect the rate at which ATF filters foul. In this study, an experimental setup was devised that allowed for determination of the time it took for fouling to occur for given mammalian (PER.C6) cell culture cell densities and viabilities as permeate flow rate and antifoam concentration was varied. The experimental results indicate, in accordance with D'Arcy's law, that the average resistance to permeate flow (across a cycle of operation) increases as biological material deposits on the membrane. Scanning electron microscope images of the post‐run filtration surface indicated that both cells and antifoam micelles deposit on the membrane. A unique mathematical model, based on the assumption that fouling was due to pore blockage from the cells and micelles in combination, was devised that allowed for estimation of sticking factors for the cells and the micelles on the membrane. This model was then used to accurately predict the increase in transmembane pressure during constant flux operation for an ATF cartridge used for perfusion cell culture. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1291–1300, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号