首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near‐infrared spectroscopy is considered to be one of the most promising spectroscopic techniques for upstream bioprocess monitoring and control. Traditionally the nature of near‐infrared spectroscopy has demanded multivariate calibration models to relate spectral variance to analyte concentrations. The resulting analytical measurements have proven unreliable for the measurement of metabolic substrates for bioprocess batches performed outside the calibration process. This paper presents results of an innovative near‐infrared spectroscopic monitor designed to follow the concentrations of glycerol and methanol, as well as biomass, in real time and continuously during the production of a monoclonal antibody by a Pichia pastoris high cell density process. A solid state instrumental design overcomes the ruggedness limitations of conventional interferometer‐based spectrometers. Accurate monitoring of glycerol, methanol, and biomass is demonstrated over 274 days postcalibration. In addition, the first example of feedback control to maintain constant methanol concentrations, as low as 1 g/L, is presented. Postcalibration measurements over a 9‐month period illustrate a level of reliability and robustness that promises its adoption for online bioprocess monitoring throughout product development, from early laboratory research and development to pilot and manufacturing scale operation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:749–759, 2014  相似文献   

2.
Human noroviruses (NoVs) are a major cause of epidemic and sporadic acute gastroenteritis worldwide. Public and personal hygiene is one of the most important countermeasures for preventing spread of NoV infection. However, no a practicable cell culture system for NoV had been developed, initial tests of the virucidal effectiveness of anti‐NoV disinfectants and sanitizers have been performed using surrogate viruses. In this study, NoV virus‐like particles (VLPs) were used as a new surrogate for NoVs and a method for evaluating NoV inactivation using them developed. This method is based on morphological changes in VLPs after treatment with sodium hypochlorite. VLP specimens were found to become deformed and degraded in a concentration‐dependent manner. Based on these results, the effects of sodium hypochlorite on VLPs were classified into four phases according to morphological changes and number of particles. Using the criteria thus established, the efficacy of ethanol, carbonates and alkali solutions against VLPs was evaluated. Deformation and aggregation of VLPs were observed after treatment with these disinfectants under specific conditions. To determine the degradation mechanism(s), VLPs were examined by SDS‐PAGE and immunoblotting after treatment with sodium hypochlorite and ethanol. The band corresponding to the major capsid protein, VP1, was not detected after treatment with sodium hypochlorite at concentrations greater than 500 ppm, but remained after treatment with ethanol. These results suggest that VLPs have excellent potential as a surrogate marker for NoVs and can be used in initial virucidal effectiveness tests to determine the mechanism(s) of chemical agents on NoVs.  相似文献   

3.
The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus‐like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti‐myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high‐performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038–1045, 2016  相似文献   

4.
Understanding and controlling aggregation is an essential aspect in the development of pharmaceutical proteins to improve product yield, potency and quality consistency. Even a minute quantity of aggregates may be reactogenic and can render the final product unusable. Self‐assembly processing of virus‐like particles (VLPs) is an efficient method to quicken the delivery of safe and efficacious vaccines to the market at low cost. VLP production, as with the manufacture of many biotherapeutics, is susceptible to aggregation, which may be minimized through the use of accurate and practical mathematical models. However, existing models for virus assembly are idealized, and do not predict the non‐native aggregation behavior of self‐assembling viral subunits in a tractable nor useful way. Here we present a mechanistic mathematical model describing VLP self‐assembly that accounts for partitioning of reactive subunits between the correct and aggregation pathways. Our results show that unproductive aggregation causes up to 38% product loss by competing favorably with the productive nucleation of self‐assembling subunits, therefore limiting the availability of nuclei for subsequent capsid growth. The protein subunit aggregation reaction exhibits an apparent second‐order concentration dependence, suggesting a dimerization‐controlled agglomeration pathway. Despite the plethora of possible assembly intermediates and aggregation pathways, protein aggregation behavior may be predicted by a relatively simple yet realistic model. More importantly, we have shown that our bioengineering model is amenable to different reactor formats, thus opening the way to rational scale‐up strategies for products that comprise biomolecular assemblies. Biotechnol. Bioeng. 2010;107: 550–560. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Influenza virus‐like particles (VLPs) are noninfectious particles resembling the influenza virus representing a promising vaccine alternative to inactivated influenza virions as antigens. Medicago inc. has developed a plant‐based VLP manufacturing platform allowing the large‐scale production of GMP‐grade influenza VLPs. In this article, we report on the biochemical compositions of these plant‐based influenza candidate vaccines, more particularly the characterization of the N‐glycan profiles of the viral haemagglutinins H1 and H5 proteins as well as the tobacco‐derived lipid content and residual impurities. Mass spectrometry analyses showed that all N‐glycosylation sites of the extracellular domain of the recombinant haemagglutinins carry plant‐specific complex‐type N‐glycans having core α(1,3)‐fucose, core β(1,2)‐xylose epitopes and Lewisa extensions. Previous phases I and II clinical studies have demonstrated that no hypersensibility nor induction of IgG or IgE directed against these glycans was observed. In addition, this article showed that the plant‐made influenza vaccines are highly pure VLPs preparations while detecting no protein contaminants coming either from Agrobacterium or from the enzymes used for the enzyme‐assisted extraction process. In contrast, VLPs contain few host cell proteins and glucosylceramides associated with plant lipid rafts. Identification of such raft markers, together with the type of host cell impurity identified, confirmed that the mechanism of VLP formation in planta is similar to the natural process of influenza virus assembly in mammals.  相似文献   

6.
7.
Protein nanoparticles such as virus‐like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self‐assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome while retaining important viral properties like cellular tropism and intracellular delivery of internalized molecules. These properties make VLPs promising and fully biocompatible nanovehicles for drug delivery. VLPs of human JC virus (hJCV) VP1 capsid protein produced in Escherichia coli elicit variable hemagglutination properties when incubated at different NaCl concentrations and pH conditions, being optimal at 200 mM NaCl and at pH range between 5.8 and 7.5. In addition, the presence or absence of chaperone DnaK in E. coli cells influence the solubility of recombinant VP1 and the conformational quality of this protein in the VLPs. The hemagglutination ability of hJCV VP1 VLPs contained in E. coli cell extracts can be modulated by buffer composition in the hemagglutination assay. It has been also determined that the production of recombinant hJCV VP1 in E. coli is favored by the absence of chaperone DnaK as observed by Western Blot analysis in different E. coli genetic backgrounds, indicating a proteolysis targeting role for DnaK. However, solubility is highly compromised in a DnaK? E. coli strain suggesting an important role of this chaperone in reduction of protein aggregates. Finally, hemagglutination efficiency of recombinant VP1 is directly related to the presence of DnaK in the producing cells. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:744–748, 2014  相似文献   

8.
An optimization method for repeated fed-batch fermentation was established with the aim of improving the recombinant human serum albumin (rHSA) production in Pichia pastoris. A simulation model for fed-batch fermentation was formulated and the optimal methanol-feeding policy calculated by dynamic programming method using five different methanol-feeding periods. The necessary state variables were collected from the calculated results and used for further optimization of repeated fed-batch fermentation. The optimal operation policy was investigated using the pre-collected state variables by estimating the overall profit per total methanol-feeding time. The calculated results indicated that the initial cell mass from the 2nd fed-batch fermentation on should be set at 35 or 40 g and methanol-feeding time at 264 h. In repeated fed-batch fermentation using the optimal operation policy, actual culture volume was in good agreement with the values simulated by model equations, but some discrepancy was observed in rHSA production. Minimum experiments were therefore carried out to re-evaluate rHSA production levels, which were then applied in re-calculations to determine the optimal operation policy. The optimal policy for repeated fed-batch fermentation established in the present study (i.e., 4-times-repeated fed-batch fermentation) achieved a 47% increase in annual rHSA production. Optimization of the culture period also brought about a 28% increase in annual rHSA production even in simple (not repeated) fed-batch fermentation.  相似文献   

9.
The transmembrane HIV‐1 envelope protein gp41 has been shown to play critical roles in the viral mucosal transmission and infection of CD4+ cells. Gag is a structural protein configuring the enveloped viral particles and has been suggested to constitute a target of the cellular immunity that may control viral load. We hypothesized that HIV enveloped virus‐like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the membrane proximal external, transmembrane and cytoplasmic domains (dgp41) could be expressed in plants. To this end, plant‐optimized HIV‐1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a Tobamovirus‐based expression system or a combination of both. Our results of biophysical, biochemical and electron microscopy characterization demonstrates that plant cells could support not only the formation of enveloped HIV‐1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These findings provide further impetus for the journey towards a broadly efficacious and inexpensive subunit vaccine against HIV‐1.  相似文献   

10.
The Polyomavirus coat protein, VP1 has been developed as an epitope presentation system able to provoke humoral immunity against a variety of pathogens, such as Influenza and Group A Streptococcus. The ability of the system to carry cytotoxic T cell epitopes on a surface‐exposed loop and the impact on protein solubility has not been examined. Four variations of three selected epitopes were cloned into surface‐exposed loops of VP1, and expressed in Escherichia coli. VP1 pentamers, also known as capsomeres, were purified via a glutathione‐S‐transferase tag. Size exclusion chromatography indicated severe aggregation of the recombinant VP1 during enzymatic tag removal resulting from the introduction the hydrophobic epitopes. Inserts were modified to possess double aspartic acid residues at each end of the hydrophobic epitopes and a high‐throughput buffer condition screen was implemented with protein aggregation monitored during tag removal by spectrophotometry and dynamic light scattering. These analyses showed that the insertion of charged residues at the extremities of epitopes could improve solubility of capsomeres and revealed multiple windows of opportunity for further condition optimization. A combination of epitope design, pH optimization, and the additive l ‐arginine permitted the recovery of soluble VP1 pentamers presenting hydrophobic epitopes and their subsequent assembly into virus‐like particles.  相似文献   

11.
12.
Streptavidin is a homotetrameric protein binding the vitamin biotin and peptide analogues with an extremely high affinity, which leads to a large variety of applications. The biotin‐auxotrophic yeast Pichia pastoris has recently been identified as a suitable host for the expression of the streptavidin gene, allowing both high product concentrations and productivities. However, so far only methanol‐based expression systems have been applied, bringing about increased oxygen demand, strong heat evolution and high requirements for process safety, causing increased cost. Moreover, common methanol‐based processes lead to large proportions of biotin‐blocked binding sites of streptavidin due to biotin‐supplemented media. Targeting these problems, this paper provides strategies for the methanol‐free production of highly bioactive core streptavidin by P. pastoris under control of the constitutive GAP promoter. Complex were superior to synthetic production media regarding the proportion of biotin‐blocked streptavidin. The optimized, easily scalable fed‐batch process led to a tetrameric product concentration of up to 4.16 ± 0.11 µM of biotin‐free streptavidin and a productivity of 57.8 nM h?1 based on constant glucose feeding and a successive shift of temperature and pH throughout the cultivation, surpassing the concentration in un‐optimized conditions by a factor of 3.4. Parameter estimation indicates that the optimized conditions caused a strongly increased accumulation of product at diminishing specific growth rates (μ ≈ D < 0.01 h?1), supporting the strategy of feeding. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:855–864, 2016  相似文献   

13.
Recombinant virus‐like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low‐level antigen accumulation and long‐time frame to produce transgenic plants are the two major roadblocks in the practical development of plant‐based VLP production. In this article, we describe the optimization of geminivirus‐derived DNA replicon vectors for rapid, high‐yield plant‐based production of VLPs. Co‐delivery of bean yellow dwarf virus (BeYDV)‐derived vector and Rep/RepA‐supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within 5 days. Co‐expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built‐in Rep/RepA cassette without P19 drove protein expression at similar levels as the three‐component system. These results demonstrate the advantages of fast and high‐level production of VLP‐based vaccines using the BeYDV‐derived DNA replicon system for transient expression in plants. Biotechnol. Bioeng. 2009;103: 706–714. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
15.
Virus‐like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co‐administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 113–132, 2016.  相似文献   

16.
Plant expression systems based on nonreplicating virus‐based vectors can be used for the simultaneous expression of multiple genes within the same cell. They therefore have great potential for the production of heteromultimeric protein complexes. This work describes the efficient plant‐based production and assembly of Bluetongue virus‐like particles (VLPs), requiring the simultaneous expression of four distinct proteins in varying amounts. Such particles have the potential to serve as a safe and effective vaccine against Bluetongue virus (BTV), which causes high mortality rates in ruminants and thus has a severe effect on the livestock trade. Here, VLPs produced and assembled in Nicotiana benthamiana using the cowpea mosaic virus–based HyperTrans (CPMV‐HT) and associated pEAQ plant transient expression vector system were shown to elicit a strong antibody response in sheep. Furthermore, they provided protective immunity against a challenge with a South African BTV‐8 field isolate. The results show that transient expression can be used to produce immunologically relevant complex heteromultimeric structures in plants in a matter of days. The results have implications beyond the realm of veterinary vaccines and could be applied to the production of VLPs for human use or the coexpression of multiple enzymes for the manipulation of metabolic pathways.  相似文献   

17.
This article demonstrates how the intracellular compartmentalization of the S. cerevisiae host cell can be exploited to impart selectivity during the primary purification of lipid‐envelope virus‐like particles (VLPs). The hepatitis B surface antigen (HBsAg) was used as the VLP model in this study. Expressed HBsAg remain localized on the endoplasmic reticulum and the recovery process involves treating cell homogenate with a detergent for HBsAg liberation. In our proposed strategy, a centrifugation step is introduced immediately following cell disruption but prior to the addition of detergent to allow the elimination of bulk cytosolic contaminants in the supernatant, achieving ~70% reduction of contaminating yeast proteins, lipids, and nucleic acids. Recovery and subsequent treatment of the solids fraction with detergent then releases the HBsAg into a significantly enriched product stream with a yield of ~80%. The selectivity of this approach is further enhanced by operating under moderate homogenization pressure conditions (~400 bar). Observed improvements in the recovery of active HBsAg and reduction of contaminating host lipids were attributed to the low‐shear conditions experienced by the HBsAg product and reduced cell fragmentation, which led to lower coextraction of lipids during the detergent step. As a result of the cleaner process stream, the level of product capture during the loading stage of a downstream hydrophobic interaction chromatography stage increased by two‐fold leading to a concomitant increase in the chromatography step yield. The lower level of exposure to contaminants is also expected to improve column integrity and lifespan. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
African horse sickness (AHS) is a debilitating and often fatal viral disease affecting horses in much of Africa, caused by the dsRNA orbivirus African horse sickness virus (AHSV). Vaccination remains the single most effective weapon in combatting AHS, as there is no treatment for the disease apart from good animal husbandry. However, the only commercially available vaccine is a live‐attenuated version of the virus (LAV). The threat of outbreaks of the disease outside its endemic region and the fact that the LAV is not licensed for use elsewhere in the world, have spurred attempts to develop an alternative safer, yet cost‐effective recombinant vaccine. Here, we report the plant‐based production of a virus‐like particle (VLP) AHSV serotype five candidate vaccine by Agrobacterium tumefaciens‐mediated transient expression of all four capsid proteins in Nicotiana benthamiana using the cowpea mosaic virus‐based HyperTrans (CPMV‐HT) and associated pEAQ plant expression vector system. The production process is fast and simple, scalable, economically viable, and most importantly, guinea pig antiserum raised against the vaccine was shown to neutralize live virus in cell‐based assays. To our knowledge, this is the first report of AHSV VLPs produced in plants, which has important implications for the containment of, and fight against the spread of, this deadly disease.  相似文献   

19.
Bacterial flagellin has been explored as a potential vaccine adjuvant for enhancing immune responses. In this article, we describe Escherichia coli‐based cell‐free protein synthesis (CFPS) as a method to rapidly produce soluble phase 1 flagellin (FliC) protein from Salmonella typhimurium. The yield was about 300 µg/mL and the product had much higher affinity for the TLR5 receptor (EC50 = 2.4 ± 1.4 pM) than previously reported. The flagellin coding sequence was first optimized for cell‐free expression. We then found that the D0 domain at the C‐terminus of flagellin was susceptible to proteolytic degradation in the CFPS system. Proteolysis was reduced by protease inhibitors, the use of protease‐deficient cell extracts or deletion of the flagellin D0 domain. A human Toll‐Like Receptor 5 (hTLR5)‐specific bioactivity analysis of purified flagellin demonstrated that, although the D0 domain is far from the TLR5 recognition region, it is important for flagellin bioactivity. We next incorporated a non‐natural amino acid displaying an alkyne moiety into flagellin using the CFPS system and attached flagellin to hepatitis B core virus‐like particles (VLPs) using bioorthogonal azide‐alkyne cycloaddition reactions. The ordered and oriented VLP display of flagellin increased its specific TLR5 stimulation activity by approximately 10‐fold. Biotechnol. Bioeng. 2013; 110: 2073–2085. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Porcine circovirus type 2 (PCV‐2) is the main causative agent associated with a group of diseases collectively known as porcine circovirus‐associated disease (PCAD). There is a significant economic strain on the global swine industry due to PCAD and the production of commercial PCV‐2 vaccines is expensive. Plant expression systems are increasingly regarded as a viable technology to produce recombinant proteins for use as pharmaceutical agents and vaccines. However, successful production and purification of PCV‐2 capsid protein (CP) from plants is an essential first step towards the goal of a plant‐produced PCV‐2 vaccine candidate. In this study, the PCV‐2 CP was transiently expressed in Nicotiana benthamiana plants via agroinfiltration and PCV‐2 CP was successfully purified using sucrose gradient ultracentrifugation. The CP self‐assembled into virus‐like particles (VLPs) resembling native virions and up to 6.5 mg of VLPs could be purified from 1 kg of leaf wet weight. Mice immunized with the plant‐produced PCV‐2 VLPs elicited specific antibody responses to PCV‐2 CP. This is the first report describing the expression of PCV‐2 CP in plants, the confirmation of its assembly into VLPs and the demonstration of their use to elicit a strong immune response in a mammalian model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号