共查询到20条相似文献,搜索用时 15 毫秒
1.
Mi Jin Nicolas Szapiel Jennifer Zhang John Hickey Sanchayita Ghose 《Biotechnology and bioengineering》2010,105(2):306-316
Host cell proteins (HCPs) constitute a major group of impurities for biologic drugs produced using cell culture technology. HCPs are required to be closely monitored and adequately removed in the downstream process. However, HCPs are a complex mixture of proteins with significantly diverse molecular and immunological properties. An overall understanding of the composition of HCPs and changes in their molecular properties upon changes in upstream and harvest process conditions can greatly facilitate downstream process design. This article describes the use of a comparative proteomic profiling method viz. two‐dimensional difference gel electrophoresis (2D‐DIGE) to examine HCP composition in the harvest stream of CHO cell culture. The effect of upstream process parameters such as cell culture media, bioreactor control strategy, feeding strategy, and cell culture duration/cell viability on HCP profile was examined using this technique. Among all the parameters studied, cell viability generated the most significant changes on the HCP profile. 2D‐DIGE was also used to compare the HCP differences between monoclonal antibody producing and null cell cultures. The HCP species in production cell culture was found to be well represented in null cell culture, which confirms the suitability of using the null cell culture for immunoassay reagent generation. 2D‐DIGE is complimentary to the commonly used HCP immunoassay. It provides a direct comparison of the changes in HCP composition under different conditions and can reveal properties (pI, MW) of individual species, whereas the immunoassay sensitively quantifies total HCP amount in a given sample. Biotechnol. Bioeng. 2010; 105: 306–316. © 2009 Wiley Periodicals, Inc. 相似文献
2.
Remo Leisi Raphael Wolfisberg Thomas Nowak Oliver Caliaro Andreas Hemmerle Nathan J. Roth Carlos Ros 《Biotechnology and bioengineering》2021,118(1):116-129
Anion‐exchange chromatography (AEX) is used in the downstream purification of monoclonal antibodies to remove impurities and potential viral contamination based on electrostatic interactions. Although the isoelectric point (pI) of viruses is considered a key factor predicting the virus adsorption to the resin, the precise molecular mechanisms involved remain unclear. To address this question, we compared structurally homologous parvoviruses that only differ in their surface charge distribution. A single charged amino acid substitution on the capsid surface of minute virus of mice (MVM) provoked an increased apparent pI (pIapp) 6.2 compared to wild‐type MVM (pIapp = 4.5), as determined by chromatofocusing. Despite their radically different pIapp, both viruses displayed the same interaction profile in Mono Q AEX at different pH conditions. In contrast, the closely related canine parvovirus (pIapp = 5.3) displayed a significantly different interaction at pH 5. The detailed structural analysis of the intricate three‐dimensional structure of the capsids suggests that the charge distribution is critical, and more relevant than the pI, in controlling the interaction of a virus with the chromatographic resin. This study contributes to a better understanding of the molecular mechanisms governing virus clearance by AEX, which is crucial to enable robust process design and maximize safety. 相似文献
3.
An efficient and consistent method of monoclonal antibody (mAb) purification can improve process productivity and product consistency. Although protein A chromatography removes most host‐cell proteins (HCPs), mAb aggregates and the remaining HCPs are challenging to remove in a typical bind‐and‐elute cation‐exchange chromatography (CEX) polishing step. A variant of the bind‐and‐elute mode is the displacement mode, which allows strongly binding impurities to be preferentially retained and significantly improves resin utilization. Improved resin utilization renders displacement chromatography particularly suitable in continuous chromatography operations. In this study we demonstrate and exploit sample displacement between a mAb and impurities present at low prevalence (0.002%–1.4%) using different multicolumn designs and recycling. Aggregate displacement depends on the residence time, sample concentration, and solution environment, the latter by enhancing the differences between the binding affinities of the product and the impurities. Displacement among the mAb and low‐prevalence HCPs resulted in an effectively bimodal‐like distribution of HCPs along the length of a multi‐column system, with the mAb separating the relatively more basic group of HCPs from those that are more acidic. Our findings demonstrate that displacement of low‐prevalence impurities along multiple CEX columns allows for selective separation of mAb aggregates and HCPs that persist through protein A chromatography. 相似文献
4.
5.
3D‐liquid chromatography as a complex mixture characterization tool for knowledge‐based downstream process development 下载免费PDF全文
Alexander T. Hanke Eleni Tsintavi Maria del Pilar Ramirez Vazquez Luuk A. M. van der Wielen Peter D. E. M. Verhaert Michel H. M. Eppink Emile J. A. X. van de Sandt Marcel Ottens 《Biotechnology progress》2016,32(5):1283-1291
Knowledge‐based development of chromatographic separation processes requires efficient techniques to determine the physicochemical properties of the product and the impurities to be removed. These characterization techniques are usually divided into approaches that determine molecular properties, such as charge, hydrophobicity and size, or molecular interactions with auxiliary materials, commonly in the form of adsorption isotherms. In this study we demonstrate the application of a three‐dimensional liquid chromatography approach to a clarified cell homogenate containing a therapeutic enzyme. Each separation dimension determines a molecular property relevant to the chromatographic behavior of each component. Matching of the peaks across the different separation dimensions and against a high‐resolution reference chromatogram allows to assign the determined parameters to pseudo‐components, allowing to determine the most promising technique for the removal of each impurity. More detailed process design using mechanistic models requires isotherm parameters. For this purpose, the second dimension consists of multiple linear gradient separations on columns in a high‐throughput screening compatible format, that allow regression of isotherm parameters with an average standard error of 8%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1283–1291, 2016 相似文献
6.
The impact of typical anion‐exchange flowthrough conditions on the IgG mass loading of an anion‐exchange membrane scale‐down unit (Mustang® Q coin) was investigated. High performance size‐exclusion chromatography and multiangle laser light scattering results suggested the presence of a small fraction of IgG aggregates with average radius >100 nm under anion‐exchange flowthrough conditions. The small filtration area presented by the 0.35 mL membrane volume Mustang® Q coin limited the membrane throughput due to fouling from the aggregates at higher antibody loading. Data in this report indicated that a 0.2 μm hybrid polyethersulfone and polyvinylidene fluoride membrane in‐line prefilter with a minimum filtration area of 20 sq cm alleviated the Mustang® Q coin fouling. The combined cake filtration and intermediate blocking model was proposed as the most likely membrane pore blocking mechanism. Increasing the filtration area in the in‐line prefilter resulted in higher IgG mass throughput. Thus, using an appropriately sized in‐line prefilter could provide more robust antibody throughput performance on scale‐down membrane anion‐exchange units. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
7.
Effects of pH,conductivity, host cell protein,and DNA size distribution on DNA clearance in anion exchange chromatography media 下载免费PDF全文
Melani C. Stone Jon Borman Gisela Ferreira P. David Robbins 《Biotechnology progress》2018,34(1):141-149
Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018 相似文献
8.
Tarrant RD Velez-Suberbie ML Tait AS Smales CM Bracewell DG 《Biotechnology progress》2012,28(4):1037-1044
Protein A chromatography is a critical and ‘gold‐standard’ step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI‐TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back‐bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D‐PAGE was then used to determine individual components associated with resin back‐bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1037–1044, 2012 相似文献
9.
The most significant factor contributing to the presence of host cell protein (HCP) impurities in Protein A chromatography eluates is their association with the product monoclonal antibodies (mAbs) has been reported previously, and it has been suggested that more efficacious column washes may be developed by targeting the disruption of the mAbs-HCP interaction. However, characterization of this interaction is not straight forward as it is likely to involve multiple proteins and/or types of interaction. This work is an attempt to begin to understand the contribution of HCP subpopulations and/or mAb interaction propensity to the variability in HCP levels in the Protein A eluate. We performed a flowthrough (FT) recycling study with product respiking using two antibody molecules of apparently different HCP interaction propensities. In each case, the ELISA assay showed depletion of select subpopulations of HCP in Protein A eluates in subsequent column runs, while the feedstock HCP in the FTs remained unchanged from its native harvested cell culture fluid (HCCF) levels. In a separate study, the final FT from each molecule's recycling study was cross-spiked with various mAbs. In this case, Protein A eluate levels remained low for all but two molecules which were known as having high apparent HCP interaction propensity. The results of these studies suggest that mAbs may preferentially bind to select subsets of HCPs, and the degree of interaction and/or identity of the associated HCPs may vary depending on the mAb. 相似文献
10.
11.
The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk‐based management for their control 下载免费PDF全文
Daniel G. Bracewell Richard Francis C. Mark Smales 《Biotechnology and bioengineering》2015,112(9):1727-1737
The use of biological systems to synthesize complex therapeutic products has been a remarkable success. However, during product development, great attention must be devoted to defining acceptable levels of impurities that derive from that biological system, heading this list are host cell proteins (HCPs). Recent advances in proteomic analytics have shown how diverse this class of impurities is; as such knowledge and capability grows inevitable questions have arisen about how thorough current approaches to measuring HCPs are. The fundamental issue is how to adequately measure (and in turn monitor and control) such a large number of protein species (potentially thousands of components) to ensure safe and efficacious products. A rather elegant solution is to use an immunoassay (enzyme‐linked immunosorbent assay [ELISA]) based on polyclonal antibodies raised to the host cell (biological system) used to synthesize a particular therapeutic product. However, the measurement is entirely dependent on the antibody serum used, which dictates the sensitivity of the assay and the degree of coverage of the HCP spectrum. It provides one summed analog value for HCP amount; a positive if all HCP components can be considered equal, a negative in the more likely event one associates greater risk with certain components of the HCP proteome. In a thorough risk‐based approach, one would wish to be able to account for this. These issues have led to the investigation of orthogonal analytical methods; most prominently mass spectrometry. These techniques can potentially both identify and quantify HCPs. The ability to measure and monitor thousands of proteins proportionally increases the amount of data acquired. Significant benefits exist if the information can be used to determine critical HCPs and thereby create an improved basis for risk management. We describe a nascent approach to risk assessment of HCPs based upon such data, drawing attention to timeliness in relation to biosimilar initiatives. The development of such an approach requires databases based on cumulative knowledge of multiple risk factors that would require national and international regulators, standards authorities (e.g., NIST and NIBSC), industry and academia to all be involved in shaping what is the best approach to the adoption of the latest bioanalytical technology to this area, which is vital to delivering safe efficacious biological medicines of all types. Biotechnol. Bioeng. 2015;112: 1727–1737. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. 相似文献
12.
Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples. 相似文献
13.
Efficient and easily scalable protein folding strong anion exchange chromatography for renaturation and simultaneous purification of recombinant human asparaginase from E. coli 下载免费PDF全文
Rajesh Kumar Kante Sandeep Vemula Maheswara Reddy Mallu Srinivasa Reddy Ronda 《Biotechnology progress》2018,34(4):1036-1044
Recombinant proteins are revolutionizing present day therapeutics. They are generally expressed as insoluble inclusion bodies in the E. coli and mis‐folding, loss of protein, and high cost of down streaming are the hurdles in their recovery. For the first time, we are reporting the refolding with simultaneous purification of rhASP in E. coli using a single step utilizing protein folding‐strong anion exchange chromatography (PF‐SAX). The purification method is also standardized for optimal concentration of solution additives, pH, and mobile phase composition. The results showed purification of rhASP with anion exchange chromatography was effective. Phosphate buffer and slightly alkaline pH produced significant recovery yields and purity profiles. The effect of solution additives such as arginine, glycerol, TMAO, sorbitol, dextran, glutamate, and fructose on rhASP renaturation is also investigated. Significant results were achieved using arginine‐TMAO combination in terms of purity, recovery yield and specific activity of 99%, 78%, and 210 IU/mg, respectively. The work concludes that PF‐SAX refolding method is superior to other conventional methods and it can be applied to large scale purification of rhASP produced in E. coli. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1036–1044, 2018 相似文献
14.
Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode 下载免费PDF全文
Timothy Iskra Ashley Sacramo Chris Gallo Ranga Godavarti Shuang Chen Scott Lute Kurt Brorson 《Biotechnology progress》2015,31(3):750-757
Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow‐rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:750–757, 2015 相似文献
15.
Membrane and membrane-associated proteins are rich in known or potential pharmaceutical drug targets for carcinogenesis. In order to systemically analyze membrane proteins of human breast cancer, we isolated membrane from MCF-7 cells by sequential extraction by washing with three different buffers, namely, phosphate buffer (5 mM, pH 8.0), Tris (40 mM, pH 9.5), and sodium carbonate (100 mM pH 11). The extracted proteins were separated by two-dimensional gel electrophoresis (2-DE) using cup-loading and were then analyzed by peptide mass fingerprinting (PMF). A total of 137 spots from the gels of the three procedures were successfully identified. They corresponded to 79 distinct proteins. Among them, 22 exclusive proteins belonging to each washing procedure were also found, including P-glycoprotein, endoplasmin, Stress-70 protein, ADAM 10, protein disulfide isomerase, and glutamate receptor. These results indicate phosphate buffer to be the most beneficial for enrichment of peripheral membrane proteins, and sodium carbonate is beneficial for the presentation of integral membrane proteins but usually with poor resolution. The reference maps and identified proteins will serve as a basis for the further investigation of breast cancer, especially the proteomic comparison among different cell types of breast cancer, or among the different stages in the drug interfering process of the MCF-7 cell line. 相似文献
16.
17.
Proteomic analysis of host cell protein dynamics in the supernatant of Fc‐fusion protein‐producing CHO DG44 and DUKX‐B11 cell lines in batch and fed‐batch cultures 下载免费PDF全文
Jin Hyoung Park Jong Hwa Jin In Jung Ji Hyun Joo An Jong Won Kim Gyun Min Lee 《Biotechnology and bioengineering》2017,114(10):2267-2278
18.
Kelley BD Tobler SA Brown P Coffman JL Godavarti R Iskra T Switzer M Vunnum S 《Biotechnology and bioengineering》2008,101(3):553-566
Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved. 相似文献
19.
Characterization of the co‐elution of host cell proteins with monoclonal antibodies during protein A purification 下载免费PDF全文
Qingchun Zhang Andrew M. Goetze Huanchun Cui Jenna Wylie Ben Tillotson Art Hewig Michael P. Hall Gregory C. Flynn 《Biotechnology progress》2016,32(3):708-717
Protein A chromatography is commonly used as the initial step for purifying monoclonal antibody biotherapeutics expressed in mammalian tissue culture cells. The purpose of this step, as well as later chromatography steps, is, in part, to remove host cell proteins (HCPs) and other related impurities. Understanding the retention mechanism for the subset of HCPs retained during this step is of great interest to monoclonal antibody (mAb) process developers because it allows formation of a guided HCP clearance strategy. However, only limited information is available about the specific HCPs that co‐purify with mAbs at this step. In this study, a comprehensive comparison of HCP subpopulations that associated with 15 different mAbs during protein A chromatography was conducted by a 2D‐LC‐HDMSE approach. We found that a majority of CHO HCPs binding to and eluting with the mAbs were common among the mAbs studied, with only a small percentage (~10% on average) of a mAb's total HCP content in the protein A (PrA) eluate specific for a particular antibody. The abundance of these HCPs in cell culture fluids and their ability to interact with mAbs were the two main factors determining their prevalence in protein A eluates. Potential binding segments for HCPs to associate with mAbs were also studied through their co‐purification with individual Fc and (Fab′)2 antibody fragments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:708–717, 2016 相似文献