首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A yeast gene for a methionine aminopeptidase, one of the central enzymes in protein synthesis, was cloned and sequenced. The DNA sequence encodes a precursor protein containing 387 amino acid residues. The mature protein, whose NH2-terminal sequence was confirmed by Edman degradation, consists of 377 amino acids. The function of the 10-residue sequence at the NH2 terminus, containing 1 serine and 6 threonine residues, remains to be established. In contrast to the structure of the prokaryotic enzyme, the yeast methionine aminopeptidase consists of two functional domains: a unique NH2-terminal domain containing two motifs resembling zinc fingers, which may allow the protein to interact with ribosomes, and a catalytic COOH-terminal domain resembling other prokaryotic methionine aminopeptidases. Furthermore, unlike the case for the prokaryotic gene, the deletion of the yeast MAP1 gene is not lethal, suggesting for the first time that alternative NH2-terminal processing pathway(s) exist for cleaving methionine from nascent polypeptide chains in eukaryotic cells.  相似文献   

2.
Yeast aminopeptidase I is a vacuolar enzyme, which catalyzes the removal of amino acids from the NH2 terminus of peptides and proteins (Frey, J., and Rohm, K-H. (1978) Biochim. Biophys. Acta 527, 31-41). A yeast genomic DNA encoding aminopeptidase I was cloned from a yeast EMBL3A library and sequenced. The DNA sequence encodes a precursor protein containing 514 amino acid residues. The "mature" protein, whose NH2-terminal sequence was confirmed by automated Edman degradation, consists, based only on the DNA sequence, of 469 amino acids. A 45-residue presequence contains positively and negatively charged as well as hydrophobic residues, and its NH2-terminal residues could be arrayed in an amphiphilic alpha-helix. This presequence differs from the signal sequences which direct proteins across bacterial plasma membranes and endoplasmic reticulum or into mitochondria. It remains to be established how this unique presequence targets aminopeptidase I to yeast vacuoles and how this sorting utilizes classical protein secretory pathways. Further, the aminopeptidase I gene, localized previously by genetic mapping to yeast chromosome XI and called the LAP4 gene (Trumbly, R. J., and Bradley, G. (1983) J. Bacteriol. 156, 36-48), was determined by DNA blot analyses to be a single copy gene located on chromosome XI.  相似文献   

3.
Two overlapping DNA fragments from yeast Saccharomyces cerevisiae containing the actin gene have been inserted into pBR322 and cloned in E.coli. Clones were identified by hybridization to complementary RNA from a plasmid containing a copy of Dictyostelium actin mRNA. One recombinant plasmid obtained (pYA102) contains a 3.93-kb Hindlll fragment, the other (pYA208) a 5.1-kb Pstl fragment, both share a common 2.2-kb fragment harboring part of the actin gene. Cloned yeast actin DNA was identified by R-loop formation and translation of the hybridized actin mRNA and by DNA sequence analysis. Cytoplasmic actin mRNA has been estimated to be about 1250 nucleotides long. There is only one type of the actin gene in S.cerevisiae.  相似文献   

4.
A major protein of Saccharomyces cerevisiae cell walls is a 29-kilodalton glycoprotein which shows lectinlike binding to beta-1,3-glucan and chitin. It was solubilized by heating isolated cell walls at 90 degrees C and purified to homogeneity by running two high-pressure liquid chromatography columns. With the sequence information of the N terminus and seven peptides, two oligonucleotides were synthesized and the gene was cloned. Its sequence is similar to those of two plant beta-glucanases, and the protein was shown to possess beta-1,3-exoglucanase activity with laminarin as substrate. Haploid yeast cells contained one copy of the gene (BGL2). Gene disruption did not result in a phenotype.  相似文献   

5.
Fatty acid synthetase from Saccharomyces cerevisiae is a multifunctional enzyme which catalyzes the synthesis of long chain fatty acids from acetyl- and malonyl-CoA. The enzyme is composed of two nonidentical subunits, alpha (Mr = 212,000) and beta (Mr = 203,000), which are coded for by two unlinked genes FAS2 and FAS1, respectively. Individual yeast strains containing mutations in either of the FAS genes were transformed with a bank of yeast DNA sequences in the vector YEp13. Plasmids YEpFAS1 and YEpFAS2 were selected by their ability to complement the fas1 or fas2 mutations, respectively. Additionally, we utilized an immunologic screening of a second yeast DNA bank and selected two clones 33F1 and 102B5 which produce antigenically reactive material to anti-yeast fatty acid synthetase antibodies. Through Southern hybridization experiments and restriction endonuclease mapping, a region of 5.3 kilobase pairs of 33F1 was shown to be homologous with YEpFAS1, and a span of 3.4 kilobase pairs of 102B5 was homologous with YEpFAS2. These experiments identify the yeast DNA sequences cloned into 33F1 as originating from the FAS1 gene and those DNA sequences in 102B5, from the FAS2 gene.  相似文献   

6.
The CDC6 gene product is required for entering the S phase of the cell cycle in Saccharomyces cerevisiae. It has been isolated on recombinant plasmids by selection for complementation of temperature-sensitive alleles with a yeast genomic library. The entire complementing activity is carried on a 1.8-kilobase chromosomal DNA fragment, as revealed by deletion mapping. Northern blotting shows that the size of the CDC6 mRNA is about 1.7 kilobases. A Southern blot of yeast chromosomes which were separated by the field inversion gel electrophoresis method indicates that the isolated DNA fragment is derived from chromosome X. The locus from which the clone was derived was marked by integration with a nutritional marker and found by meiotic mapping to cosegregate with CDC6. Thus, we conclude that we have isolated the authentic CDC6 gene. Nucleotide sequence analysis of the CDC6 gene has revealed an open reading frame that encodes a protein with Mr = 57,969. There are five potential Asn-X-(Ser/Thr) glycosylation sites and a highly conserved nucleotide-binding site in the CDC6 sequence. Although computer surveys indicate overall sequence homology between S. cerevisiae CDC6 protein and Saccharomyces pombe CDC10 START protein, they may not be functionally equivalent as evaluated by the complementation assay.  相似文献   

7.
The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins.  相似文献   

8.
Acetylation is the most frequently occurring chemical modification of the alpha-NH2 group of eukaryotic proteins and is catalyzed by an N alpha-acetyltransferase. Recently, a eukaryotic N alpha-acetyltransferase was purified to homogeneity from Saccharomyces cerevisiae, and its substrate specificity was partially characterized (Lee, F.-J. S., Lin L.-W., and Smith, J. A. (1988) J. Biol. Chem. 263, 14948-14955). This article describes the cloning from a yeast lambda gt11 cDNA library and sequencing of a full length cDNA encoding yeast N alpha-acetyltransferase. DNA blot hybridizations of genomic and chromosomal DNA reveal that the gene (so-called AAA1, amino-terminal, alpha-amino, acetyltransferase) is present as a single copy located on chromosome IV. The use of this cDNA will allow the molecular details of the role of N alpha-acetylation in the sorting and degradation of eukaryotic proteins to be determined.  相似文献   

9.
We have screened a yeast genomic library for complementation of the UV sensitivity of mutants defective in the RAD1 gene and isolated a plasmid designated pNF1000 with an 8.9-kilobase insert. This multicopy plasmid quantitatively complemented the UV sensitivity of two rad1 mutants tested but did not affect the UV resistance of other rad mutants. The location of the UV resistance function in pNF1000 was determined by deletion analysis, and an internal fragment of the putative RAD1 gene was integrated into the genome of a RAD1 strain. Genetic analysis of several integrants showed that integration occurred at the chromosomal RAD1 site, demonstrating that the internal fragment was derived from the RAD1 gene. A 3.88-kilobase region of pNF1000 was sequenced and showed the presence of a small open reading frame 243 nucleotides long that is apparently unrelated to RAD1, as well as a 2,916-nucleotide larger open reading frame presumed to encode RAD1 protein. Depending on which of two possible ATG codons initiates translation, the size of the RAD1 protein is calculated at 110 or 97 kilodaltons.  相似文献   

10.
Methionine aminopeptidase (MAP), which catalyzes the removal of NH2-terminal methionine from proteins, was isolated from Saccharomyces cerevisiae. The enzyme was purified 472-fold to apparent homogeneity. The Mr of the native enzyme was estimated to be 36,000 +/- 5,000 by gel filtration chromatography, and the Mr of the denatured protein was estimated to be 34,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 7.0, and its pI is 7.8 as determined by chromatofocusing on Mono P. The enzyme was inactivated by metalloprotease inhibitors (EDTA, o-phenanthroline and nitrilotriacetic acid), sulfhydryl-modifying reagents (HgCl2 and p-hydroxymercuribenzoic acid), and Zn2+. Yeast MAP failed to cleave methionine p-nitroanilide. Among 11 Xaa-Ala-Ser analogues (Xaa = Ala, Asp, Gln, Glu, Ile, Leu, Lys, Met, Phe, Pro, and Ser), MAP cleaved only Met-Ala-Ser. MAP also cleaved methionine from other tripeptides whose penultimate amino acid residue is relatively small and/or uncharged (e.g. Pro, Gly, Val, Thr, or Ser) but not when bulky and/or charged (Arg. His, Leu, Met, or Tyr). Yeast MAP displayed similar substrate specificities compared with those of Escherichia coli (Ben-Bassat, A., Bauer, K., Chang, S.Y., Myambo, K., Boosman, A., and Chang, S. (1987) J. Bacteriol. 169, 751-757) and Salmonella typhimurium MAP (Miller, C., Strauch, K. L., Kukral, A. M., Miller, J. L., Wingfield, P. T., Mazzei, G. J., Werlen, R. C., Garber, P., and Movva, N. R. (1987) Proc. Natl, Acad. Sci. U.S.A. 84, 2718-2722). In general, the in vitro specificity of yeast MAP is consistent with the specificity observed in previous in vivo studies in yeast (reviewed in Arfin, S. M., and Bradshaw, R. A. (1988) Biochemistry 27, 7979-7984).  相似文献   

11.
The structure of a Saccharomyces cerevisiae gene that encodes a small nuclear RNA (snRNA) of 189 nucleotides is described. This gene, designated SNR189, is located 400 base pairs upstream of the CRY1 gene on yeast chromosome III. Gene replacement analysis revealed the SNR189 gene to be dispensable for growth under a variety of culture conditions. The snR189 sequence lacks homology with other sequenced yeast or metazoan snRNAs.  相似文献   

12.
13.
The structural gene for the Saccharomyces cerevisiae repair enzyme uracil-DNA-glycosylase (UNG1) was selected from a yeast genomic library in the multicopy vector YEp24 by complementation of the ung1-1 mutant in in vitro enzyme assays. The sequenced gene has an open reading frame which codes for a protein with molecular weight of 40,471. The measured size of the mRNA of 1.25 kb is in agreement with the predicted molecular weight of the protein. The gene product was overproduced about 100-fold in strains carrying an UNG1 gene containing plasmid at 100-200 copies/cell. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cleared lysates from such an overproducing strain, followed by renaturation of enzyme activity from individual gel slices showed the presence of two enzymatic activities in comparable quantities with Mr values of 39,500 and 33,000, indicating that the full size protein is either readily degraded in vivo or is very sensitive to proteolytic digestion in vitro. The carboxyl-terminal two-thirds of the yeast uracil-DNA-glycosylase is highly homologous to the entire Escherichia coli enzyme (50% amino acid identity). Genetic mapping experiments have localized the UNG1 gene on the left arm of chromosome XIII at 17 cM from the GAL80 locus proximal to the centromer. Deletions of the UNG1 gene are viable.  相似文献   

14.
S Zhang  C Lockshin  A Herbert  E Winter    A Rich 《The EMBO journal》1992,11(10):3787-3796
A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.  相似文献   

15.
Farnesyl diphosphate (FPP) synthetase is a key enzyme in isoprenoid biosynthesis which supplies C15 precursors for several classes of essential metabolites including sterols, dolichols, and ubiquinones. The structural gene for FPP synthetase was isolated on a 4.5-kilobase EcoRI genomic restriction fragment from the yeast Saccharomyces cerevisiae. The clone encodes a 40,483-dalton polypeptide of 342 amino acids with a high degree of similarity to the protein encoded by a putative rat liver clone of FPP synthetase (Clarke, C. F., Tanaka, R. D., Svenson, K., Wamsley, M., Fogelman, A. M., and Edwards, P. A. (1987) Mol. Cell Biol. 7, 3138-3146) and to an active site protein fragment from avian liver FPP synthetase (Brems, D. N., Bruenger, E., and Rilling, H. C. (1981) Biochemistry 20, 3711-3718). When cloned into the yeast shuttle vector YRp17, the 4.5-kilobase EcoRI fragment directed a 2-3-fold over-expression of FPP synthetase activity in transformed yeast cells. The levels of expression were independent of culture growth phase and orientation of the insert, indicative of a functional promoter in the clone. Disruption of the FPP synthetase gene from a diploid yeast strain, followed by dissection and analysis of tetrads, demonstrates that the gene is an essential, single copy number gene in yeast. The gene for FPP synthetase resides on chromosome XI as judged from Southern blots of separated yeast chromosomes.  相似文献   

16.
Telomeric DNA in Saccharomyces is organized into a non-nucleosomal chromatin structure called the telosome that can be released from chromosome ends in soluble form by nuclease digestion (Wright, J. H., Gottschling, D. E. and Zakian, V. A. (1992) Genes Dev. 6, 197-210). The protein-DNA interactions of soluble telosomes were investigated by monitoring isolated telomeric DNA fragments for the retention of bound protein using both gel mobility shift and nitrocellulose filter-binding assays. Telosomal proteins remained associated with telomeric DNA at concentrations of ethidium bromide that dissociated nucleosomes. The protein-DNA interactions in the yeast telosome were also disrupted by much lower salt concentrations than those known to disrupt either the interactions of ciliate terminus-binding proteins with telomeric DNA or the interactions of histones with DNA in nucleosomes. Taken together, these data corroborate previously published nuclease mapping data indicating that telosomes are distinct in structure from conventional nucleosomes. These data also indicate that yeast do not possess telomere binding proteins similar to those detected in ciliates that remain tightly bound to telomeric DNA even in high salt. In addition, the characteristic gel mobility shift of soluble telosomes could be mimicked by complexes formed in vitro with yeast telomeric DNA and recombinant Rap1p suggesting that Rap1p, a known component of soluble yeast telosomes (Wright, J. H., Gottschling, D. E. and Zakian, V. A. (1992) Genes Dev. 6, 197-210; Conrad, M. N., Wright, J. H., Wolf, A. J. and Zakian, V. A. (1990) Cell 63, 739-750), is likely to be the major structural protein bound directly to yeast telomeric DNA.  相似文献   

17.
Molecular cloning of the RAD10 gene of Saccharomyces cerevisiae   总被引:12,自引:0,他引:12  
We have cloned the RAD10 gene of Saccharomyces cerevisiae and physically mapped it to a 1.0-kb DNA fragment. Strains containing disruptions of the RAD10 gene were found to show enhanced UV sensitivity compared with the previously characterized rad10-1 or rad10-2 mutants. The UV sensitivity of the disruption mutant is comparable to the highly UV sensitive rad1-19, rad2-delta, and rad3-2 mutants.  相似文献   

18.
19.
A yeast cDNA genetic library in a bacteriophage expression vector was screened using an antiserum reacting with fructose 1,6-bisphosphate aldolase from Saccharomyces cerevisiae. Radio-labelled probes of selected immunopositive clones were used for screening of a yeast genomic library. From the genomic clones a yeast/Escherichia coli shuttle plasmid was constructed containing on a 1990-base-pair fragment the entire structural gene FBA1 coding for yeast aldolase. The primary structure of the FBA1 gene was determined. An open reading frame comprises 1077 base pairs coding for a protein of 359 amino acids with a predicted molecular mass of 39,608 Da. As observed for other strongly expressed yeast genes, codon usage is extremely biased. The 810 base pairs at the 5' end and the 90 base pairs at the 3' end of the coding region of the cloned FBA1 gene are sufficient for normal expression and show characteristic elements present in the noncoding sequences of other yeast genes. Aldolase is the major protein in yeast cells transformed with a high-copy-number plasmid containing the FBA1 gene. The aldolase gene was disrupted by insertion of the yeast URA3 gene into the coding region of one FBA1 allele in a homozygous diploid ura3 strain. The haploid offsprings with the defective aldolase allele fba1::URA3 lack aldolase enzymatic activity and fail to grow in media containing as a carbon source metabolites of only one side of the aldolase reaction.  相似文献   

20.
Elevated growth temperature (heat shock) promoted the structural stability of karyoskeletal protein-enriched fractions isolated from Saccharomyces cerevisiae. Similar stabilization could be induced by brief incubation of nuclei at 37 degrees C in vitro. These results are similar to those reported for higher eucaryotes and have practical implications for investigation of the karyoskeleton in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号