首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Misenheimer TM  Sheehan JP 《Biochemistry》2010,49(46):9997-10005
Supersulfated low molecular weight heparin (ssLMWH) inhibits the intrinsic tenase (factor IXa-factor VIIIa) complex in an antithrombin-independent manner. Recombinant factor IXa with alanine substitutions in the protease domain (K126A, N129A, K132A, R165A, R170A, N178A, R233A) was assessed with regard to heparin affinity in solution and ability to regulate protease activity within the factor IXa-phospholipid (PL) and intrinsic tenase complexes. In a soluble binding assay, factor IXa K126A, K132A, and R233A dramatically (10-20-fold) reduced ssLMWH affinity, while factor IXa N129A and R165A moderately (5-fold) reduced affinity relative to wild type. In the factor IXa-PL complex, binding affinity for ssLMWH was increased 4-fold, and factor X activation was inhibited with a potency 7-fold higher than predicted for wild-type protease-ssLMWH affinity in solution. In the intrinsic tenase complex, ssLMWH inhibited factor X activation with a 4-fold decrease in potency relative to wild-type factor IXa-PL. The mutations increased resistance to inhibition by ssLMWH in a similar fashion for both enzyme complexes (R233A > K126A > K132A/R165A > N129A/N178A/wild type) except for factor IXa R170A. This protease had ssLMWH affinity and potency for the factor IXa-PL complex similar to wild-type protease but was moderately resistant (6-fold) to inhibition in the intrinsic tenase complex based on increased cofactor affinity. These results are consistent with conformational regulation of the heparin-binding exosite and macromolecular substrate catalysis by factor IXa. An extensive overlap exists between the heparin and factor VIIIa binding sites on the protease domain, with residues K126 and R233 dominating the heparin interaction and R165 dominating the cofactor interaction.  相似文献   

2.
Yuan QP  Walke EN  Sheehan JP 《Biochemistry》2005,44(9):3615-3625
Therapeutic heparin concentrations selectively inhibit the intrinsic tenase complex in an antithrombin-independent manner. To define the molecular target and mechanism for this inhibition, recombinant human factor IXa with alanine substituted for solvent-exposed basic residues (H92, R170, R233, K241) in the protease domain was characterized with regard to enzymatic activity, heparin affinity, and inhibition by low molecular weight heparin (LMWH). These mutations only had modest effects on chromogenic substrate hydrolysis and the kinetics of factor X activation by factor IXa. Likewise, factor IXa H92A and K241A showed factor IXa-factor VIIIa affinity similar to factor IXa wild type (WT). In contrast, factor IXa R170A demonstrated a 4-fold increase in apparent factor IXa-factor VIIIa affinity and dramatically increased coagulant activity relative to factor IXa WT. Factor IXa R233A demonstrated a 2.5-fold decrease in cofactor affinity and reduced ability to stabilize cofactor half-life relative to wild type, suggesting that interaction with the factor VIIIa A2 domain was disrupted. Markedly (R233A) or moderately (H92A, R170A, K241A) reduced binding to immobilized LMWH was observed for the mutant proteases. Solution competition demonstrated that the EC(50) for LMWH was increased less than 2-fold for factor IXa H92A and K241A but over 3.5-fold for factor IXa R170A, indicating that relative heparin affinity was WT > H92A/K241A > R170A > R233A. Kinetic analysis of intrinsic tenase inhibition demonstrated that relative affinity for LMWH was WT > K241A > H92A > R170A > R233A, correlating with heparin affinity. Thus, LMWH inhibits intrinsic tenase by interacting with the heparin-binding exosite in the factor IXa protease domain, which disrupts interaction with the factor VIIIa A2 domain.  相似文献   

3.
Sheehan JP  Phan TM 《Biochemistry》2001,40(16):4980-4989
Phosphorothioate oligonucleotides (PS ODNs) prolong the activated partial thromboplastin time in human plasma by inhibition of intrinsic tenase (factor IXa-factor VIIIa) activity. This inhibition was characterized using ISIS 2302, a 20-mer antisense PS ODN. ISIS 2302 demonstrated hyperbolic, mixed-type inhibition of factor X activation by the intrinsic tenase complex. The decrease in V(max(app)) was analyzed by examining complex assembly, cofactor stability, and protease catalysis. ISIS 2302 did not inhibit factor X activation by the factor IXa-phospholipid complex, or significantly affect factor VIII-phospholipid affinity. Inhibitory concentrations of ISIS 2302 modestly decreased the affinity of factor IXa-factor VIIIa binding in the presence of phospholipid (K(D) = 11.5 vs 4.8 nM). This effect was insufficient to explain the reduction in V(max(app)). ISIS 2302 did not affect the in vitro half-life of factor VIIIa, suggesting it did not destabilize cofactor activity. In the presence of 30% ethylene glycol, the level of factor X activation by the factor IXa-phospholipid complex increased 3-fold, and the level of chromogenic substrate cleavage by factor IXa increased more than 50-fold. ISIS 2302 demonstrated partial inhibition of factor X activation by the factor IXa-phospholipid complex, and chromogenic substrate cleavage by factor IXa, only in the presence of ethylene glycol. Like the intact enzyme complex, ISIS 2302 demonstrated hyperbolic, mixed-type inhibition of chromogenic substrate cleavage by factor IXa (K(I) = 88 nM). Equilibrium binding studies with fluorescein-labeled ISIS 2302 demonstrated a similar affinity (K(D) = 92 nM) for the PS ODN-factor IX interaction. These results suggest that PS ODNs bind to an exosite on factor IXa, modulating catalytic activity of the intrinsic tenase complex.  相似文献   

4.
Heparin inhibits the intrinsic tenase complex (factor IXa-factor VIIIa) via interaction with a factor IXa exosite. To define the role of this exosite, human factor IXa with alanine substituted for conserved surface residues (R126, N129, K132, R165, N178) was characterized. Chromogenic substrate hydrolysis by the mutant proteases was reduced 20-30% relative to factor IXa wild type. Coagulant activity was moderately (N129A, K132A, K126A) or dramatically (R165A) reduced relative to factor IXa wild type. Kinetic analysis demonstrated a marked reduction in apparent cofactor affinity (23-fold) for factor IXa R165, and an inability to stabilize cofactor activity. Factor IXa K126A, N129A, and K132A demonstrated modest reductions ( approximately 2-fold) in apparent cofactor affinity, and accelerated decay of intrinsic tenase activity. In the absence of factor VIIIa, factor IXa N178A and R165A demonstrated a defective Vmax(app) for factor X activation. In the presence of factor VIIIa, Vmax(app) varied in proportion to the predicted factor IXa-factor VIIIa concentration. However, factor IXa R165A had a 65% reduction in the kcat for factor X, suggesting an additional effect on catalysis. The ability of factor IXa to compete for physical assembly into the intrinsic tenase complex was enhanced by EGR-chloromethylketone bound to the factor IXa active site or addition of factor X, and reduced by selected mutations in the heparin-binding exosite (N178A, K126A, R165A). These results suggest that the factor IXa heparin-binding exosite participates in both cofactor binding and protease activation, and cofactor affinity is linked to active site conformation and factor X interaction during enzyme assembly.  相似文献   

5.
Falls LA  Furie B  Furie BC 《Biochemistry》2000,39(43):13216-13222
Phospholipid membranes play a significant role during the proteolytic activation of blood coagulation proteins. This investigation identifies a role for phosphatidylethanolamine (PE) during the activation of factor X by the tenase complex, an enzymatic complex composed of the serine protease, factor IXa, a protein cofactor, factor VIIIa, a phospholipid membrane, and Ca(2+). Phospholipid vesicles composed of PE, phosphatidylserine (PS), and phosphatidylcholine support factor Xa generation. The K(m) and k(cat) for factor X activation by the tenase complex are independent of PE in the presence of 20% PS. At lower PS concentrations, the presence of 20 or 35% PE lowers the K(m) and increases the k(cat) as compared to those in vesicles without PE. The effect of PE on the k(cat) of the tenase complex is mediated through factor VIIIa. PE also enhances factor Xa generation by facilitating tenase complex formation; PE lowers the K(d(app)) of factor IXa for both phospholipid/Ca(2+) and phospholipid/Ca(2+)/factor VIIIa complexes in the presence of suboptimal PS. In addition, the K(d)s of factor IXa and factor X were lower for phospholipid vesicles containing PE. N-Methyl-PE increased the k(cat) and decreased the K(d(app)), whereas N,N-dimethyl-PE had no effect on either parameter, indicating the importance of headgroup size. Lyso-PE had no effect on kinetic parameters, indicating the sn-2 acyl chain dependence of the PE effect. Together, these results demonstrate a role for PE in the assembly and activity of the tenase complex and further extend the understanding of the importance of PE-containing membranes in hemostasis.  相似文献   

6.
In buffer systems, heparin and low molecular weight heparin (LMWH) directly inhibit the intrinsic factor X-activating complex (intrinsic tenase) but have no effect on the prothrombin-activating complex (prothrombinase). Although chemical modification of LMWH, to lower its affinity for antithrombin (LA-LMWH) has no effect on its ability to inhibit intrinsic tenase, N-desulfation of LMWH reduces its activity 12-fold. To further explore the role of sulfation, hypersulfated LA-LMWH was synthesized (sLA-LMWH). sLA-LMWH is not only a 32-fold more potent inhibitor of intrinsic tenase than LA-LMWH; it also acquires prothrombinase inhibitory activity. A direct correlation between the extent of sulfation of LA-LMWH and its inhibitory activity against intrinsic tenase and prothrombinase is observed. In plasma-based assays of tenase and prothrombinase, sLA-LMWH produces similar prolongation of clotting times in plasma depleted of antithrombin and/or heparin cofactor II as it does in control plasma. In contrast, heparin has no effect in antithrombin-depleted plasma. When the effect of sLA-LMWH on various components of tenase and prothrombinase was examined, its inhibitory activity was found to be cofactor-dependent (factors Va and VIIIa) and phospholipid-independent. These studies reveal that sLA-LMWH acts as a potent antithrombin-independent inhibitor of coagulation by attenuating intrinsic tenase and prothrombinase.  相似文献   

7.
Activated platelets promote intrinsic factor X-activating complex assembly by presenting high affinity, saturable binding sites for factor IXa mediated by two disulfide-constrained loop structures (loop 1, Cys88-Cys99; loop 2, Cys95-Cys109) within the second epidermal growth factor (EGF2) domain. To identify amino acids essential for factor X activation complex assembly, recombinant factor IXa point mutants in loop 1 (N89A, I90A, K91A, and R94A) and loop 2 (D104A, N105A, and V107A) were prepared. All seven mutants were similar to the native factor IXa by SDS-PAGE, active site titration, and content of gamma-carboxyglutamic acid residues. Kinetic constants obtained by either titrating factor X or factor VIIIa on SFLLRN-activated platelets or phospholipid vesicles revealed near normal values of Km(app) and Kd(app)FVIIIa for all mutants, indicating normal substrate and cofactor binding. In a factor Xa generation assay in the presence of activated platelets and cofactor factor VIIIa, compared with native factor IXa (Kd(app)FIXa approximately 1.1 nm, Vmax approximately 12 nm min(-1)), N89A displayed an increase of approximately 20-fold in Kd(app)FIXa and a decrease of approximately 20-fold in Vmax; I90A had an increase of approximately 5-fold in Kd(app)FIXa and approximately 10-fold decrease in Vmax; and V107A had an increase of approximately 3-fold in Kd(app)FIXa and approximately 4-fold decrease in Vmax. We conclude that residues Asn89, Ile90, and Val107 within loops 1 and 2 (Cys88-Cys109) of the EGF2 domain of factor IXa are essential for normal interactions with the platelet surface and for the assembly of the factor X-activating complex on activated platelets.  相似文献   

8.
Ahmad SS  Walsh PN 《Biochemistry》2002,41(37):11269-11276
The assembly of the factor X activating complex on the platelet surface requires the occupancy of three receptors: (1) enzyme factor IXa, (2) cofactor factor VIII(a), and (3) substrate factor X. To further evaluate this three-receptor model, simultaneous binding isotherms of (125)I-factor X and (131)I-factor VIII(a) to activated platelets were determined as a function of time and also as a function of the concentrations of both ligands in the presence of active site-inhibited factor IXa (45 nM) and 5 mM CaCl(2). In the presence of active site-inhibited factor IXa and factor VIIIa there are two independent factor X binding sites: (1) low affinity, high capacity (approximately 9000 sites/platelet; K(d) approximately 380 nM) and (2) low capacity, high affinity (1700 sites/platelet; K(d) approximately 30 nM). A single specific and selective factor X binding site was expressed (1200 sites/platelet; K(d) approximately 9 nM) when the shared factor X/factor II site was blocked by excess factor II (4 microM). In the presence of active site-inhibited factor IXa (4 nM) and factor II (4 microM), factor X binds to 3-fold more platelet sites than procofactor VIII with relatively low affinity (K(d) approximately 250 nM). The activation of procofactor VIII to factor VIIIa increases the affinity of binding to platelets of both factor VIIIa ( approximately 4-fold to K(d) approximately 0.8-1.5 nM) and factor X ( approximately 25-50-fold to K(d) approximately 5-9 nM). In the presence of excess zymogen factor IX, which blocks the shared factor IX/factor IXa binding site, the substrate, factor X, and the active cofactor, factor VIIIa, form a 1:1 stoichiometric complex. These coordinate binding studies support the conclusion that factor X initially binds to a high-capacity, low-affinity platelet binding site shared with prothrombin, which then presents factor X to a specific high-affinity site consisting of factor VIIIa bound to a high-affinity, low-capacity receptor on activated platelets.  相似文献   

9.
F Lian  L He  N S Colwell  P Lollar  D M Tollefsen 《Biochemistry》2001,40(29):8508-8513
A monoclonal IgG isolated from a patient with multiple myeloma has been shown to bind to exosite II of thrombin, prolong both the thrombin time and the activated partial thromboplastin time (aPTT) when added to normal plasma, and alter the kinetics of hydrolysis of synthetic peptide substrates. Although the IgG does not affect cleavage of fibrinogen by thrombin, it increases the rate of inhibition of thrombin by purified antithrombin approximately 3-fold. Experiments with plasma immunodepleted of antithrombin or heparin cofactor II confirm that prolongation of the thrombin time requires antithrombin. By contrast, prolongation of the aPTT requires neither antithrombin nor heparin cofactor II. The IgG delays clotting of plasma initiated by purified factor IXa but has much less of an effect on clotting initiated by factor Xa. In a purified system, the IgG decreases the rate of activation of factor VIII by thrombin. These studies indicate that binding of a monoclonal IgG to exosite II prolongs the thrombin time indirectly by accelerating the thrombin-antithrombin reaction and may prolong the aPTT by interfering with activation of factor VIII, thereby diminishing the catalytic activity of the factor IXa/VIIIa complex.  相似文献   

10.
During blood coagulation factor IXa binds to factor VIIIa on phospholipid membranes to form an enzymatic complex, the tenase complex. To test whether there is a protein-protein contact site between the gamma-carboxyglutamic acid (Gla) domain of factor IXa and factor VIIIa, we demonstrated that an antibody to the Gla domain of factor IXa inhibited factor VIIIa-dependent factor IXa activity, suggesting an interaction of the factor IXa Gla domain with factor VIIIa. To study this interaction, we synthesized three analogs of the factor IXa Gla domain (FIX1-47) with Phe-9, Phe-25, or Val-46 replaced, respectively, with benzoylphenylalanine (BPA), a photoactivatable cross-linking reagent. These factor IX Gla domain analogs maintain native tertiary structure, as demonstrated by calcium-induced fluorescence quenching and phospholipid binding studies. In the absence of phospholipid membranes, FIX1-47 was able to inhibit factor IXa activity. This inhibition is dependent on the presence of factor VIIIa, suggesting a contact site between the factor IXa Gla domain and factor VIIIa. To demonstrate a direct interaction we did cross-linking experiments with FIX1-479BPA, FIX1-4725BPA, and FIX1-4746BPA. Covalent cross-linking to factor VIIIa was observed primarily with FIX1-4725BPA and to a much lesser degree with FIX1-4746BPA. Immunoprecipitation experiments with an antibody to the C2 domain of factor VIIIa indicate that the factor IX Gla domain cross-links to the A3-C1-C2 domain of factor VIIIa. These results suggest that the factor IXa Gla domain contacts factor VIIIa in the tenase complex through a contact site that includes phenylalanine 25 and perhaps valine 46.  相似文献   

11.
Factor VIIIa, a cofactor for the protease factor IXa, is a trimer of A1, A2 and A3-C1-C2 subunits. In the absence of phospholipid (PL), the k(cat) for factor VIIIa-dependent, factor IXa-catalyzed conversion of factor X was markedly less than that observed in the presence of PL (approx. 150 min(-1)) and decreased as the ionic strength of the reaction increased. At low salt concentration, the k(cat) (5.5 min(-1)) was approx. 8-fold greater than observed at near physiologic ionic strength (0.7 min(-1)). However, this level of salt showed minimal effects on the intermolecular affinities of factor VIIIa (or isolated A2 subunit) for factor IXa or on the K(m) for factor X. Alternatively, the association of A2 subunit with A1 subunit was sensitive to increases in salt and paralleled the reduction in k(cat) observed with factor VIIIa. This instability was not observed in PL-containing reactions. Fluorescence energy transfer between acrylodan-A2 and fluorescein-A1/A3-C1-C2 dimer showed a requirement for both PL and factor IXa for maximal association of A2 with dimer. These results indicate that in the presence of factor IXa, the salt-dependent dissociation of factor VIIIa subunits is significantly enhanced in the absence of PL, promoting a reduced k(cat) for the cofactor-dependent generation of factor Xa.  相似文献   

12.
13.
Kolkman JA  Mertens K 《Biochemistry》2000,39(25):7398-7405
Insertions in surface loops bordering the substrate-binding groove have been shown to play a major role in the interaction of serine proteases with their cognate inhibitors and substrates. In the present study, we investigated the functional role of factor IX insertion loop 256-268, and in particular of residues Asn(264) and Lys(265) therein. To this end, the purified and activated mutants des-(N264,K265)-FIX and FIX-K265A were compared to normal factor IXa with regard to a number of functional properties. The catalytic efficiency of des-(N264,K265)-FIXa and FIXa-K265A toward the amide substrate CH(3)SO(2)-Leu-Gly-Arg-pNA was 2-3-fold increased relative to that of normal factor IXa. Comparison of the activities of normal and mutant factor IXa toward a series of closely related amide substrates indicates that mutation of residues Asn(264)-Lys(265) influences the interactions in the S2-binding site. The mutations in loop 256-268 also increased the susceptibility of factor IXa to antithrombin inhibition by approximately 3-fold. Factor X activation experiments in the absence of factor VIIIa revealed that the catalytic efficiency of des-(N264,K265)-FIXa and FIXa-K265A was about 20 times higher than that of normal factor IXa. In the presence of factor VIIIa, however, the activity toward factor X was similar to that of normal factor IXa. The reduced sensitivity of the factor IXa mutants to factor VIIIa was neither due to an increase in factor IXa-dependent inactivation of factor VIIIa, nor to a lower affinity for this cofactor. Overall, these data demonstrate that loop 256-268 restricts the activity of factor IXa toward both synthetic and natural substrates. Complex formation with factor VIIIa alleviates the inhibitory effect of this insertion loop on the activation of FX.  相似文献   

14.
The physiologic activator of factor X consists of a complex of factor IXa, factor VIIIa, Ca(2+) and a suitable phospholipid surface. In one study, helix 330 (162 in chymotrypsin) of the protease domain of factor IXa was implicated in binding to factor VIIIa. In another study, residues 558-565 of the A2 subunit of factor VIIIa were implicated in binding to factor IXa. We now provide data, which indicate that the helix 330 of factor IXa interacts with the 558-565 region of the A2 subunit. Thus, the ability of the isolated A2 subunit was severely impaired in potentiating factor X activation by IXa(R333Q) and by a helix replacement mutant (IXa(helixVII) in which helix 330-338 is replaced by that of factor VII) but it was normal for an epidermal growth factor 1 replacement mutant (IXa(PCEGF1) in which epidermal growth factor 1 domain is replaced by that of protein C). Further, affinity of each 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-Glu-Gly-Arg-IXa (dEGR-IXa) with the A2 subunit was determined from its ability to inhibit wild-type IXa in the tenase assay and from the changes in dansyl fluorescence emission signal upon its binding to the A2 subunit. Apparent K(d(A2)) values are: dEGR-IXa(WT) or dEGR-IXa(PCEGF1) approximately 100 nm, dEGR-IXa(R333Q) approximately 1.8 micrometer, and dEGR-IXa(helixVII) >10 micrometer. In additional experiments, we measured the affinities of these factor IXa molecules for a peptide comprising residues 558-565 of the A2 subunit. Apparent K(d(peptide)) values are: dEGR-IXa(WT) or dEGR-IXa(PCEGF1) approximately 4 micrometer, and dEGR-IXa(R333Q) approximately 62 micrometer. Thus as compared with the wild-type or PCEGF1 mutant, the affinity of the R333Q mutant for the A2 subunit or the A2 558-565 peptide is similarly reduced. These data support a conclusion that the helix 330 of factor IXa interacts with the A2 558-565 sequence. This information was used to model the interface between the IXa protease domain and the A2 subunit, which is also provided herein.  相似文献   

15.
Factor VIIIa consists of three subunits designated A1, A2, and A3-C1-C2. The isolated A2 subunit possesses limited cofactor activity in stimulating factor IXa-catalyzed activation of factor X. This activity is markedly enhanced by the A1 subunit (inter-subunit K(d) = 1.8 microm). The C-terminal region of A1 subunit (residues 337-372) is thought to represent an A2-interactive site. This region appears critical to factor VIIIa, because proteolysis at Arg(336) by activated protein C or factor IXa is inactivating. A truncated A1 (A1(336)) showed similar affinity for A2 subunit (K(d) = 0.9 microm) and stimulated its cofactor activity to approximately 50% that observed for native A1. However, A1(336) was unable to reconstitute factor VIIIa activity in the presence of A2 and A3-C1-C2 subunits. Fluorescence anisotropy of fluorescein (Fl)-FFR-factor IXa was differentially altered by factor VIIIa trimers containing either A1 or A1(336). Fluorescence energy transfer demonstrated that, although Fl-A1(336)/A3-C1-C2 bound acrylodan-A2 with similar affinity as the native dimer, an increased inter-fluorophore separation was observed. These results indicate that the C-terminal region of A1 appears necessary to properly orient A2 subunit relative to factor IXa in the cofactor rather than directly stimulate A2 and elucidate the mechanism for cofactor inactivation following cleavage at this site.  相似文献   

16.
Neuenschwander PF 《Biochemistry》2004,43(10):2978-2986
Blood coagulation factor IXa (fIXa) is a trypsin-like serine protease with low inherent activity that is greatly enhanced in the factor X activation complex. Molecular details of the conversion of fIXa from an inactive enzyme into a fully functional procoagulant are unclear. Recent studies have identified a heparin-binding exosite in the protease domain of fIXa. Effects of exosite occupation on fIXa activity are unclear. We used the Kunitz-type inhibitor bovine pancreatic trypsin inhibitor (BPTI) to probe fIXa reactivity in the absence and in the presence of heparin. While fIXa alone was poorly reactive with BPTI (K(i) approximately 0.7 mM), this reactivity was increased roughly 20-fold (K(i) = 37 +/- 6 microM) by heparin. This was reproducible with low-molecular-weight heparin (enoxaparin; K(i) = 70 +/- 12 microM). Surface plasmon resonance studies of the interaction between heparin and BPTI indicated an unstable interaction with very low affinity (K(d) = 172 microM). In contrast, kinetic studies revealed a high-affinity interaction between heparin and fIXa (K(d) = 128 +/- 26 nM) and showed that the enhancement of BPTI inhibition of fIXa by heparin was well described by a competitive inhibition model where heparin acts as an affecter of fIXa reactivity with inhibitor. Fluorescence studies with dansyl-EGR-fIXa supported the high-affinity interaction between heparin and fIXa and suggested an altered environment in the fIXa active-site region upon heparin binding. This modulating effect of heparin was supported by the observation of a heparin-induced increase in reactivity of fIXa toward a pentapeptide substrate. When viewed together, the results imply that specific physiological exosite interactions with heparin can induce alterations in the environment of the extended fIXa active site that can result in increased reactivity.  相似文献   

17.
R P Link  F J Castellino 《Biochemistry》1983,22(17):4033-4041
The Vmax/Km (microM -1 min -1.) for bovine factor X activation by bovine factor IXa alpha, in the presence of sufficient [Ca2+] to saturate the initial reaction rate, was 0.007. When factor IXa beta was substituted for factor IXa alpha in this reaction, the Vmax/Km decreased to 0.001, suggesting that factor IXa alpha was a more potent catalyst under these conditions. When phospholipid (PL) vesicles (egg phosphatidylcholine/bovine brain phosphatidylserine, 4:1 w/w) were added to these same systems, at levels sufficient to saturate their effects, little change in the Vmax/Km occurred when factor IXa alpha was the enzyme. However, when factor IXa beta was employed, the Vmax/Km dramatically increased to 0.023, demonstrating that factor IXa beta responded to PL addition to a much greater extent than did factor IXa alpha. Upon addition of thrombin-activated factor VIII (factor VIIIa,t), at a suboptimal level, to the above systems, the Vmax/Km for factor X activation by factor IXa alpha/Ca2+/PL/factor VIIIa,t was increased to 1.0, whereas this parameter for factor X activation by factor IXa beta/Ca2+/PL/factor VIIIa,t under the same conditions was found to be 27.3. During these studies, it was discovered that the factor X which became activated to factor Xa during the course of reaction participated in several feedback reactions: activation of factor X, activation of factor VIII, and conversion of factor IXa alpha to factor IXa beta. All feedback reactions, which are capable of complicating the kinetic interpretation, were inhibited by performing the studies in a system which contained a rapid factor Xa inhibitor, Glu-Gly-Arg-CH2Cl, thus allowing kinetic constants to be accurately determined. The results show that while factor IXa alpha is a more efficient enzyme than factor IXa beta toward factor X activation in the absence of cofactors, the response of factor IXa beta to the reaction cofactors, PL and factor VIIIa,t, is much greater than that of factor IXa alpha.  相似文献   

18.
In factor IX residues 199-204 encompass one of six surface loops bordering its substrate-binding groove. To investigate the contribution of this loop to human factor IX function, a series of chimeric factor IX variants was constructed, in which residues 199-204 were replaced by the corresponding sequence of factor VII, factor X, or prothrombin. The immunopurified and activated chimeras were indistinguishable from normal factor IXa in hydrolyzing a small synthetic substrate, indicating that this region is not involved in the interaction with substrate residues on the N-terminal side of the scissile bond. In contrast, replacement of loop 199-204 resulted in a 5-25-fold reduction in reactivity toward the macromolecular substrate factor X. This reduction was due to a combination of increased K(m) and reduced k(cat). In the presence of factor VIIIa the impaired reactivity toward factor X was largely restored for all factor IXa variants, resulting in a more pronounced stimulation by factor VIIIa compared with normal factor IXa (3 to 5 x 10(4)-fold versus 5 x 10(3)-fold). Inhibition by antithrombin was only slightly affected for the factor IXa variant with the prothrombin loop sequence, whereas factor IXa variants containing the analogous residues of factor VII or factor X were virtually insensitive to antithrombin inhibition. In the presence of heparin, however, all chimeric factor IXa variants formed complexes with antithrombin. Thus the cofactors heparin and factor VIIIa have in common that they both alleviate the deleterious effects of mutations in the factor IX loop 199-204. Collectively, our data demonstrate that loop 199-204 plays an important role in the interaction of factor IXa with macromolecular substrates.  相似文献   

19.
This paper describes the consequences of alanine-scanning mutagenesis on 28 positions of the second epidermal growth factor (EGF-2) domain of factor IX. We identified four positions of Gln(97), Phe(98), Tyr(115), and Leu(117) that are critical for secretion of factor IX. Of the remaining mutations, 4 mutants (V86A, E113A, K122A, and S123A) are as active as wild-type factor IX (IXwt); 16 (D85A, K100A, N101A, D104A, N105A, R116A, E119A, T87A, I90A, K91A, R94A, E96A, S102A, K106A, T112A, and N120A) retain reduced but detectable activity, and 4 (N89A, N92A, G93A, and V107A) are nearly inert in the clotting assay. Both factor XIa and the factor VIIa-tissue factor complex effectively catalyzed the activation of these mutants except N89A. The mutant V107A failed to form the factor tenase complex with factor VIIIa because of a 35-fold increase in K(d). The mutants N89A and N92A did not compete with factor IXwt for factor VIIIa binding, and G93A exhibited a 6-fold increase in K(i) values in the competitive binding assay. It appears that mutations at these positions have significantly affected the interaction between factor IX and factor VIIIa, although other mutations had little effect on the binding of factor IX to factor VIIIa. Mutations in two regions, Thr(87)-Gly(93) and Asn(101)-Val(107), significantly increased the K(m) value of factor IXa (2-10-fold) in cleavage of factor X in the absence of factor VIIIa. In the presence of factor VIIIa, the catalytic efficiency of each mutant toward factor X paralleled its clotting activity. Briefly, we propose two relatively distinctive functions of factor IX for two adjacent regions in the EGF-2 domain; the first loop region (residues 89-94) is involved with the binding of its cofactor, factor VIIIa, and the third loop with connected beta-sheets (residues 102-108) is involved in the proper binding to the substrate, factor X.  相似文献   

20.
Wakabayashi H  Su YC  Ahmad SS  Walsh PN  Fay PJ 《Biochemistry》2005,44(30):10298-10304
We recently identified an acidic-rich segment in the A1 domain of factor VIII (residues 110-126) that functions in the coordination of Ca(2+), an ion necessary for cofactor activity [Wakabayashi et al. (2004) J. Biol. Chem. 279, 12677-12684]. Mutagenesis studies showed that replacement of residue Glu113 with Ala (E113A) yielded a factor VIII point mutant possessing increased specific activity as determined by a one-stage clotting assay. Mutagenesis at this site suggested that substitution with relatively small, nonpolar residues was well tolerated, whereas replacement with a number of polar or charged residues appeared detrimental to activity. Ala substitution resulted in the greatest enhancement, yielding an approximately 2-fold increased specific activity. Time course experiments following reaction with thrombin revealed similar rates of activation and inactivation of E113A as observed for the wild type. Results from factor Xa generation assays showed minimal differences in kinetic parameters and factor IXa affinity for E113A and wild-type factor VIIIa when run in the presence of synthetic phospholipid vesicles, whereas factor VIIIa E113A displayed an approximately 4-fold greater affinity for factor IXa compared with factor VIIIa wild type in reactions run on the platelet membrane surface. This latter effect may be attributed, in part, to a 2-fold increased affinity of factor VIIIa E113A for the platelet membrane. Considering that low levels of factors VIIIa and IXa are generated during clotting in plasma, the increased cofactor specific activity observed for E113A factor VIII may result from its enhanced affinity for factor IXa on the physiological membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号