首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Millar TM 《FEBS letters》2004,562(1-3):129-133
One electron reductions of oxygen and nitrite by xanthine oxidase form peroxynitrite. The nitrite and oxygen reducing activities of xanthine oxidase are regulated by oxygen with K(oxygen) 26 and 100 microM and K(nitrite) 1.0 and 1.1 mM with xanthine and NADH as donor substrates. Optimal peroxynitrite formation occurs at 70 microM oxygen with purine substrates. Kinetic parameters: V(max) approximately 50 nmol/min/mg and K(m) of 22, 36 and 70 microM for hypoxanthine, pterin and nitrite respectively. Peroxynitrite generation is inhibited by allopurinol, superoxide dismutase and diphenylene iodonium. A role for this enzyme activity can be found in the antibacterial activity of milk and circulating xanthine oxidase activity.  相似文献   

2.
The effect of peroxynitrite (PN), a highly toxic agent, on catalase (CAT) activity in fish liver microsomal homogenates was determined. PN was synthesized by mixing acidic hydrogen peroxide solution with sodium nitrite solution and then adding sodium hydroxide solution into the mixture in order to stabilize the highly labile compound peroxynitrous acid (ONOOH) in peroxynitrite anion form (ONOO(- )). The effect of PN and decomposed peroxynitrite (DPN), prepared by preincubation with HCl, was monitored by using a constant amount of homogenate containing the CAT enzyme. Significant losses were observed in the CAT activity of fish liver enzyme after treatment with PN and also with DPN products, the inhibitory effect of PN being slightly more pronounced than that of DPN. IC(50) values were 5.5 and 8.5 microM for PN and DPN, respectively. The PN inhibition of CAT activity is due to both the effects of the secondary and decomposition products of PN and its nitration and oxidation effects on the amino acid residues of the enzyme.  相似文献   

3.
The effect of peroxynitrite (PN), a highly toxic agent, on catalase (CAT) activity in fish liver microsomal homogenates was determined. PN was synthesized by mixing acidic hydrogen peroxide solution with sodium nitrite solution and then adding sodium hydroxide solution into the mixture in order to stabilize the highly labile compound peroxynitrous acid (ONOOH) in peroxynitrite anion form (ONOO? ). The effect of PN and decomposed peroxynitrite (DPN), prepared by preincubation with HCl, was monitored by using a constant amount of homogenate containing the CAT enzyme. Significant losses were observed in the CAT activity of fish liver enzyme after treatment with PN and also with DPN products, the inhibitory effect of PN being slightly more pronounced than that of DPN. IC50 values were 5.5 and 8.5 μM for PN and DPN, respectively. The PN inhibition of CAT activity is due to both the effects of the secondary and decomposition products of PN and its nitration and oxidation effects on the amino acid residues of the enzyme.  相似文献   

4.
The formation of reactive oxygen and nitrogen species by rat peritoneal macrophages induced by a low-intensity He-Ne laser radiation (LR) was studied in this work. It was found that the formation of reactive oxygen species, nitric oxide, and peroxynitrite as well as changes in the activity of superoxide dismutase (SOD) depended to a large extent on the LR dose. In particular, it was found that activation of SOD at low LR doses was accompanied by nitric oxide level increase, while the level of peroxynitrite showed no significant changes. On the other hand, an enhanced LR dose inhibited the enzyme, and this was accompanied by peroxynitrite accumulation. All the measurements were carried out the day after LR treatment. The revealed regularities consequently demonstrate the existence of a deferred LR action on macrophages associated with the production of reactive oxygen and nitrogen species.  相似文献   

5.
Sensitive to apoptosis gene (SAG) protein, a novel zinc RING finger protein, which is redox responsive and protects mammalian cells from apoptosis, is a metal chelator and a potential reactive oxygen species scavenger, but its antioxidant properties have not been completely defined. The present study was undertaken to test the hypothesis that human SAG protects from DNA damage induced by peroxynitrite, a potent physiological inorganic toxin. The present study has shown that SAG significantly inhibits single strand breaks in supercoiled plasmid DNA induced by synthesized peroxynitrite (ONOO(-)) and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a generator of peroxynitrite through the reaction between nitric oxide and superoxide anion. The formation of 8-hydroxy-2(')-deoxyguanosine in calf thymus DNA by peroxynitrite and SIN-1 was also significantly inhibited by SAG. The protective effect on peroxynitrite-mediated DNA damage was completely abolished by the reaction of SAG with N-ethylmaleimide, a chemical modification agent for the sulfhydryl group of proteins. These observations suggested that the sulfhydryl group of cysteines in SAG could react directly with peroxynitrite to prevent DNA damage.  相似文献   

6.
C Cannella  R Berni 《FEBS letters》1983,162(1):180-184
Cyanide-promoted inactivation of the enzyme rhodanese [thiosulfate sulfurtransferase (EC 2.8.1.1)] in the presence of ketoaldehydes is caused by reduced forms of molecular oxygen generated during autoxidation of the reaction products. The requirement of both catalase and superoxide dismutase to prevent rhodanese inactivation indicates that hydroxyl radical could be the most efficient inactivating agent. Rhodanese, also in the less stable sulfur-free form, shows a different sensitivity towards oxygen activated species. While the enzyme is unaffected by superoxide radical, it is rapidly inactivated by hydrogen peroxide. The extent of inactivation depends on the molar ratio between sulfur-free enzyme and oxidizing agent. Fully inactive enzyme is reactivated by reduction with its substrate thiosulfate.  相似文献   

7.
DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells   总被引:19,自引:0,他引:19  
Reactive oxygen species have been shown to be involved in the mutagenicity, clastogenicity, and apoptosis of mammalian cells treated with arsenic or cadmium. As these endpoints require several hours of cellular processing, it is not clear that reactive oxygen species damage DNA directly or interfere with DNA replication and repair. Using single-cell alkaline electrophoresis, we have detected DNA strand breaks (DSBs) in bovine aortic endothelial cells by a 4-h treatment with sodium arsenite (As) and cadmium chloride (Cd) in sublethal concentrations. As-induced DSBs could be decreased by nitric oxide (NO) synthase inhibitors, superoxide scavengers, and peroxynitrite scavengers and could be increased by superoxide generators and NO generators. Treatment with As also increased nitrite production. These results suggest that As-increased NO may react with O2*- to produce peroxynitrite and cause DNA damage. The results showing that Cd increased cellular H2O2 levels and that Cd-induced DSBs could be modulated by various oxidant modulators suggest that Cd may induce DSBs via O2*-, H2O2, and *OH. Nevertheless, the DSBs in both As- and Cd-treated cells seem to come from the excision of oxidized bases such as formamidopyrimidine and 8-oxoguanine, as the Escherichia coli enzyme formamidopyrimidine-DNA glycosylase (Fpg) increased DSBs in cells treated with As, 3-morpholinosydnonimine (a peroxynitrite-generating agent), Cd, or H2O2.  相似文献   

8.
The present study shows that nitric oxide (NO) irreversibly inhibits purified cytochrome oxidase in a reverse oxygen concentration-dependent manner. The inhibition is dramatically protected by a peroxynitrite scavenger, suggesting that peroxynitrite is formed from the reaction of NO with cytochrome oxidase at low oxygen concentration, and that peroxynitrite is involved in irreversible cytochrome oxidase inactivation. Production of nitroxyl anion or superoxide was tested as potential mechanisms underlying the conversion of NO to peroxynitrite. A nitroxyl anion scavenger potently protected the irreversible inhibition, whereas a superoxide dismutase did not provide protective effect, suggesting that the peroxynitrite was formed from nitroxyl anion rather than the reaction of NO with superoxide.  相似文献   

9.
Glutathione peroxidase (GSH-Px) is inactivated on exposure to peroxynitrite under physiologically relevant conditions. Stopped-flow kinetic studies show that the reaction between peroxynitrite and GSH-Px is first-order in each of the reactants, with an apparent second-order rate constant of 4.5 ± 0.2 × 104M−1s−1per monomer unit of enzyme. In good agreement with this value, GSH-Px inactivation experiments afford an apparent second-order rate constant of 1.8 ± 0.1 × 104M−1s−1per monomer unit of enzyme. The hydroxyl radical scavengers mannitol, DMSO, and benzoate (at 100 mM) afford only 8–12% protection of the enzyme, while addition of 25 mM bicarbonate results in 55% protection. The minimal protection by hydroxyl radical scavengers indicates, as expected, that hydroxyl radicals are not involved in the inactivation. Protection by bicarbonate occurs because peroxynitrite is rapidly trapped by CO2to form the adduct nitrosoperoxycarbonate (ONOOCO2), and/or other reactive species that preferentially decompose to nitrate rather than react with GSH-Px. The close agreement between the rate constants obtained from enzyme inactivation and from stopped-flow kinetics experiments suggests that the mechanism of the reaction between peroxynitrite and GSH-Px involves the oxidation of the ionized selenol of the selenocysteine residue in the enzyme's active site (E-Se) by peroxynitrite. This reaction does not simply involve formation of the selenenic acid, E-SeOH, because E-SeOH is an intermediate in the catalytic cycle of the enzyme, and thus its formation cannot explain the inactivation we observe. Thus, the ionized selenol in the active site is transformed into a form of selenium that cannot easily be reduced back to the selenol.  相似文献   

10.
Muscle glycogen phosphorylase (GP) is a key enzyme in glucose metabolism, and its impairment can lead to muscle dysfunction. Tyrosine nitration of glycogen phosphorylase occurs during aging and has been suggested to be involved in progressive loss of muscle performance. Here, we show that GP (in its T and R form) is irreversibly impaired by exposure to peroxynitrite, a biological nitrogen species known to nitrate reactive tyrosine residues, and to be involved in physiological and pathological processes. Kinetic and biochemical analysis indicated that irreversible inactivation of GP by peroxynitrite is due to the fast (k(inact)=3 x 10(4) M(-1) s(-1)) nitration of a unique tyrosine residue of the enzyme. Endogenous GP was tyrosine nitrated and irreversibly inactivated in skeletal muscle cells upon exposure to peroxynitrite, with concomitant impairment of glycogen mobilization. Ligand protection assays and mass spectrometry analysis using purified GP suggested that the peroxynitrite-dependent inactivation of the enzyme could be due to the nitration of Tyr613, a key amino acid of the allosteric inhibitor site of the enzyme. Our findings suggest that GP functions may be regulated by tyrosine nitration.  相似文献   

11.
Patients with minimal hepatic encephalopathy (MHE) show increased oxidative stress in blood. We aimed to assess whether MHE patients show alterations in different types of blood cells in (a) basal reactive oxygen and nitrogen species levels; (b) capacity to metabolise these species. To assess the mechanisms involved in the altered capacity to metabolise these species we also analysed: (c) peroxynitrite formation and d) peroxynitrite reaction with biological molecules. Levels of reactive oxygen and nitrogen species were measured by flow cytometry in blood cell populations from cirrhotic patients with and without MHE and controls, under basal conditions and after adding generators of superoxide (plumbagin) or nitric oxide (NOR-1) to assess the capacity to eliminate them. Under basal conditions, MHE patients show reduced superoxide and peroxynitrite levels and increased nitric oxide (NO) and nitrotyrosine levels. In patients without MHE plumbagin strongly increases cellular superoxide, moderately peroxynitrite and reduces NO levels. In MHE patients, plumbagin increases slightly superoxide and strongly peroxynitrite levels and affects slightly NO levels. NOR-1 increases NO levels much less in patients with than without MHE. These data show that the mechanisms and the capacity to eliminate cellular superoxide, NO and peroxynitrite are enhanced in MHE patients. Superoxide elimination is enhanced through reaction with NO to form peroxynitrite which, in turn, is eliminated by enhanced reaction with biological molecules, which could contribute to cognitive impairment in MHE. The data show that basal free radical levels do not reflect the oxidative stress status in MHE.  相似文献   

12.
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. We investigated whether the ICDH would be a vulnerable target of peroxynitrite anion (ONOO-) as a purified enzyme, in intact cells, and in liver mitochondria from ethanol-fed rats. Synthetic peroxynitrite and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a peroxynitrite-generating compound, inactivated ICDH in a dose- and time-dependent manner. The inactivation of ICDH by peroxynitrite or SIN-1 was reversed by dithiothreitol. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. Immunoblotting analysis of peroxynitrite-modified ICDH indicates that S-nitrosylation of cysteine and nitration of tyrosine residues are the predominant modifications. Using electrospray ionization mass spectrometry (ESI-MS) with tryptic digestion of protein, we found that peroxynitrite forms S-nitrosothiol adducts on Cys305 and Cys387 of ICDH. Nitration of Tyr280 was also identified, however, this modification did not significantly affect the activity of ICDH. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by peroxynitrite. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and binding of the hydrophobic probe 8-anilino-1-napthalene sulfonic acid. When U937 cells were incubated with 100 microM SIN-1 bolus, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Using immunoprecipitation and ESI-MS, we were also able to isolate and positively identify S-nitrosylated and nitrated mitochondrial ICDH from SIN-1-treated U937 cells as well as liver from ethanol-fed rats. Inactivation of ICDH resulted in the pro-oxidant state of cells reflected by an increased level of intracellular reactive oxygen species, a decrease in the ratio of [NADPH]/[NADPH + NADP+], and a decrease in the efficiency of reduced glutathione turnover. The peroxynitrite-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

13.
Peroxynitrite has been shown to modify low-density lipoproteins (LDL) into a form recognized by the macrophage scavenger receptor, suggesting that it may play a significant role in atherogenesis. Considering that the mechanisms underlying LDL modifications by this agent have not been well elucidated, the aim of this study was to characterize the chemical modifications of either the lipid or the protein moieties mediated by synthesized peroxynitrite (preformed) or formed in situ by SIN-1, and evaluate the protective effects of some dietary phenolic acids. Preformed peroxynitrite does not induce LDL lipid peroxidation, as assessed either by formation of conjugated diene isomers or degradation of fatty acids and cholesteryl esters, although a rapid loss of alpha-tocopherol content occurs. Also, peroxynitrite formed in situ induces only a slight lipid oxidation. In contrast, under conditions where the LDL lipid moiety is not significantly oxidized, peroxynitrite either preformed or formed in situ rapidly elicit significant LDL apoprotein modifications, as evaluated by an increase in carbonyl groups formation and by great decrease in intrinsic tryptophan and thiol groups, in a concentration-dependent manner, that are accompanied by an increase in the LDL net negative charge, leading to an increase in electrophoretic mobility. Phenolic acids, namely caffeic, chlorogenic and ferulic, inhibit all these processes in a concentration dependent way, being the catechols the most efficient. UV spectral analysis of phenols upon interaction with peroxynitrite suggest that, in our assay conditions, such protection is related with the scavenging of this agent by either electron donation for the catechols, caffeic and chlorogenic acids, or nitration for the monophenol ferulic acid. Our data point that in contrast with other physiological oxidants, as ferrylmyoglobin or copper, peroxynitrite triggers the rapid damage to LDL primarily by protein and not lipid oxidation, and that such process is inhibited by dietary phenolic derivatives of cinnamic acids.  相似文献   

14.
Uric acid has been considered to be an efficient scavenger of peroxynitrite but the reaction between urate and peroxynitrite has been only partially characterized. Also, previous studies have indicated that urate may increase peroxynitrite-mediated oxidation of low density lipoprotein (LDL). Here, we examined the reaction between urate and peroxynitrite by combining kinetic, oxygen consumption, spin trapping, and product identification studies; in parallel, we tested the effect of urate upon peroxynitrite-mediated lipid oxidation. Our results demonstrated that urate reacts with peroxynitrite with an apparent second order rate constant of 4.8 x 10(2) M(-1). s(-1) in a complex process, which is accompanied by oxygen consumption and formation of allantoin, alloxan, and urate-derived radicals. The main radical was identified as the aminocarbonyl radical by the electrospray mass spectra of its 5, 5-dimethyl-l-pyrroline N-oxide adduct. Mechanistic studies suggested that urate reacts with peroxynitrous acid and with the radicals generated from its decomposition to form products that can further react with peroxynitrite anion. These many reactions may explain the reported efficiency of urate in inhibiting some peroxynitrite-mediated processes. Production of the aminocarbonyl radical, however, may propagate oxidative reactions. We demonstrated that this radical is likely to be the species responsible for the effects of urate in amplifying peroxynitrite-mediated oxidation of liposomes and LDL, which was monitored by the formation of lipid peroxides and thiobarbituric acid-reactive substances. The aminocarbonyl radical was not detectable during urate attack by other oxidants and consequently it is unlikely to be responsible for all previously described prooxidant effects of uric acid.  相似文献   

15.
Boccini F  Herold S 《Biochemistry》2004,43(51):16393-16404
The strong oxidizing and nitrating agent peroxynitrite has been shown to diffuse into erythrocytes and oxidize oxyhemoglobin (oxyHb) to metHb. Because the value of the second-order rate constant for this reaction is on the order of 10(4) M(-)(1) s(-)(1) and the oxyHb concentration is about 20 mM (expressed per heme), this process is rather fast and oxyHb is considered a sink for peroxynitrite. In this work, we showed that the reaction of oxyHb with peroxynitrite, both in the presence and absence of CO(2), proceeds via the formation of oxoiron(iv)hemoglobin (ferrylHb), which in a second step is reduced to metHb and nitrate by its reaction with NO(2)(*). In the presence of physiological relevant amounts of CO(2), ferrylHb is generated by the reaction of NO(2)(*) with the coordinated superoxide of oxyHb (HbFe(III)O(2)(*)(-)). This reaction proceeds via formation of a peroxynitrato-metHb complex (HbFe(III)OONO(2)), which decomposes to generate the one-electron oxidized form of ferrylHb, the oxoiron(iv) form of hemoglobin with a radical localized on the globin. CO(3)(*)(-), the second radical formed from the reaction of peroxynitrite with CO(2), is also scavenged efficiently by oxyHb, in a reaction that finally leads to metHb production. Taken together, our results indicate that oxyHb not only scavenges peroxynitrite but also the radicals produced by its decomposition.  相似文献   

16.
Nitric oxide reacts rapidly with superoxide to form the strong nitrating agent peroxynitrite, which is responsible for much of the tissue damage associated with diverse pathophysiological conditions such as inflammation. The occurrence of free or protein-bound nitrotyrosine (NTYR) has been considered as evidence for in vivo formation of peroxynitrite. However, various agents can nitrate tyrosine, and their relative significance in vivo has not been determined due to lack of a sensitive method to analyze NTYR in tissue proteins and biological fluids. We have developed a new HPLC-electrochemical detection method to analyze NTYR in protein hydrolyzates or biological fluids. The sample is injected directly into a reversed-phase HPLC column and NTYR is subsequently reduced by a platinum column to 3-aminotyrosine, which is quantified with an electrochemical detector. The method is simple, selective, and sensitive (detection limit, 0.1 pmol per 20-microl injection). We have applied this method to compare in vitro the ability of various nitrating agents to form NTYR in bovine serum albumin and human plasma. Yields of NTYR formed in human plasma proteins incubated with 1 or 10 mM nitrating agent decreased in the following order: synthetic peroxynitrite > 3-morpholinosydonimine, a generator of both NO and superoxide > Angeli's salt, which forms nitroxyl anion (NO-) > spermine-NONOate, which releases NO > sodium nitrite plus hypochlorite, which forms the nitrating agent nitryl chloride (NO2Cl). A simple purification method using a C18 Sep-Pak cartridge is also described for analysis of free NTYR in human plasma.  相似文献   

17.
Microglial activation, oxidative stress, and dysfunctions in mitochondria, including the reduction of cytochrome oxidase activity, have been implicated in neurodegeneration. The current experiments tested the effects of reducing cytochrome oxidase activity on the ability of microglia to respond to inflammatory insults. Inhibition of cytochrome oxidase by azide reduced oxygen consumption and increased reactive oxygen species (ROS) production but did not affect cell viability. Azide also attenuated microglial activation, as measured by nitric oxide (NO.) production in response to lipopolysaccharide (LPS). It is surprising that the inhibition of cytochrome oxidase also diminished the activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a Krebs cycle enzyme. This reduction was exaggerated when the azide-treated microglia were also treated with LPS. The combination of the azide-stimulated ROS and LPS-induced NO. would likely cause peroxynitrite formation in microglia. Thus, the possibility that KGDHC was inactivated by peroxynitrite was tested. Peroxynitrite inhibited the activity of isolated KGDHC, nitrated tyrosine residues of all three KGDHC subunits, and reduced immunoreactivity to antibodies against two KGDHC components. Thus, our data suggest that inhibition of the mitochondrial respiratory chain diminishes aerobic energy metabolism, interferes with microglial inflammatory responses, and compromises mitochondrial function, including KGDHC activity, which is vulnerable to NO. and peroxynitrite that result from microglial activation. Thus, activation of metabolically compromised microglia can further diminish their oxidative capacity, creating a deleterious spiral that may contribute to neurodegeneration.  相似文献   

18.
Effect of nitric oxide (NO) on the respiratory burst of neutrophils was examined under different oxygen tensions. Phorbol myristate acetate (PMA) stimulated oxygen consumption and superoxide (O2-) generation in neutrophils by a mechanism which was inhibited reversibly by NO. The inhibitory effect of NO increased significantly with a decrease in oxygen tension in the medium. The inhibitory effect of NO was suppressed in medium containing oxyhemoglobin (HbO2), a NO scavenging agent. In contrast, 3-morpholinosydnonimine (SIN-1), a compound that rapidly generates peroxynitrite (ONOO-) from the released NO and O2-, slightly stimulated the PMA-induced respiratory burst. These results suggested that NO, but not ONOO, might reversibly inhibit superoxide generation by neutrophils especially at physiologically low oxygen tensions thereby decreasing oxygen toxicity particularly in and around hypoxic tissues.  相似文献   

19.
Peroxynitrite anion (ONOO-) is a potent oxidant that mediates oxidation of both nonprotein and protein sulfhydryls. Endothelial cells, macrophages, and neutrophils can generate superoxide as well as nitric oxide, leading to the production of peroxynitrite anion in vivo. Apparent second order rate constants were 5,900 M-1.s-1 and 2,600-2,800 M-1.s-1 for the reaction of peroxynitrite anion with free cysteine and the single thiol of albumin, respectively, at pH 7.4 and 37 degrees C. These rate constants are 3 orders of magnitude greater than the corresponding rate constants for the reaction of hydrogen peroxide with sulfhydryls at pH 7.4. Unlike hydrogen peroxide, which oxidizes thiolate anion, peroxynitrite anion reacts preferentially with the undissociated form of the thiol group. Peroxynitrite oxidizes cysteine to cystine and the bovine serum albumin thiol group to an arsenite nonreducible product, suggesting oxidation beyond sulfenic acid. Peroxynitrous acid was a less effective thiol-oxidizing agent than its anion, with oxidation presumably mediated by the decomposition products, hydroxyl radical and nitrogen dioxide. The reactive peroxynitrite anion may exert cytotoxic effects in part by oxidizing tissue sulfhydryls.  相似文献   

20.
There is increasing evidence that Trypanosoma cruzi antioxidant enzymes play a key immune evasion role by protecting the parasite against macrophage-derived reactive oxygen and nitrogen species. Using T. cruzi transformed to overexpress the peroxiredoxins TcCPX (T. cruzi cytosolic tryparedoxin peroxidase) and TcMPX (T. cruzi mitochondrial tryparedoxin peroxidase), we found that both cell lines readily detoxify cytotoxic and diffusible reactive oxygen and nitrogen species generated in vitro or released by activated macrophages. Parasites transformed to overexpress TcAPX (T. cruzi ascorbate-dependent haemoperoxidase) were also more resistant to H2O2 challenge, but unlike TcMPX and TcCPX overexpressing lines, the TcAPX overexpressing parasites were not resistant to peroxynitrite. Whereas isolated tryparedoxin peroxidases react rapidly (k=7.2 x 10(5) M(-1) x s(-1)) and reduce peroxynitrite to nitrite, our results demonstrate that both TcMPX and TcCPX peroxiredoxins also efficiently decompose exogenous- and endogenously-generated peroxynitrite in intact cells. The degree of protection provided by TcCPX against peroxynitrite challenge results in higher parasite proliferation rates, and is demonstrated by inhibition of intracellular redox-sensitive fluorescence probe oxidation, protein 3-nitrotyrosine and protein-DMPO (5,5-dimethylpyrroline-N-oxide) adduct formation. Additionally, peroxynitrite-mediated over-oxidation of the peroxidatic cysteine residue of peroxiredoxins was greatly decreased in TcCPX overexpressing cells. The protective effects generated by TcCPX and TcMPX after oxidant challenge were lost by mutation of the peroxidatic cysteine residue in both enzymes. We also observed that there is less peroxynitrite-dependent 3-nitrotyrosine formation in infective metacyclic trypomastigotes than in non-infective epimastigotes. Together with recent reports of up-regulation of antioxidant enzymes during metacyclogenesis, our results identify components of the antioxidant enzyme network of T. cruzi as virulence factors of emerging importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号