首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recording of the H-reflex was used to study the changes in the reflex excitability of soleus motoneurons during dorsal and plantar flexions of the ipsilateral and contralateral feet performed with different strengths by 15 healthy subjects. The dorsiflexion of the ipsilateral foot was accompanied by the “classic” reciprocal inhibition of the soleus motoneurons, the degree of the inhibition being directly proportional to the strength of the contraction of pretibial muscles and depending on the presence of foot support. The plantar flexion of the ipsilateral foot was accompanied by changes in reflex excitability, which were inversely proportional to the strength of the flexion. This was apparently related to the activation of a mechanism protecting the muscle against excessive contraction. The dorsal and plantar flexions of the contralateral foot were accompanied by similar changes in the reflex excitability of soleus motoneurons, namely, an increase in the case of weak contraction and a decrease in the case of strong contraction. However, the increase in reflex excitability during contralateral dorsiflexion was smaller and its decrease began at a weaker contraction than in the case of contralateral plantar flexion. The changes in the reflex excitability of soleus motoneurons during movements of the contralateral foot, which were also strength-dependent, confirmed the presence of cross-projections that are likely to be part of the generator of the central pattern of lower limb movement coordination.  相似文献   

2.
The Hoffmann (H) reflex and motor (M) response were studied in soleus and gastrocnemius during voluntary contraction in eight male volunteers. AIMS: To determine if the strength of spindle input to the muscles is the same. To assess if the M response size changes during contraction. RESULTS: The size of the maximum M response (M max) changed during contraction in each subject. Hence, all H reflex measurements were normalized to the M max at each level of contraction for each subject. The largest H/M max was bigger in soleus than gastrocnemius at every contraction level. The overall largest H/M max for soleus (97%) and gastrocnemius (55%) were achieved at 40 and 100% maximum voluntary contraction (MVC), respectively. CONCLUSION: Soleus receives greater spindle feedback than the gastrocnemius both at rest and during voluntary contraction.  相似文献   

3.
The degree of activation of the central stepping program during passive leg movement was studied in healthy subjects under unloading conditions; the excitability of spinal motoneurons was studied during passive and voluntary stepping movements. Passive stepping movements with characteristics maximally close to those during voluntary stepping were accomplished by the experimenter. The bursts of muscular activity during voluntary and imposed stepping movements were compared. In addition, the influence on the leg movement of artificially created loading onto the foot was studied. The excitability of spinal motoneurons was estimated by the amplitude of modulation of the m. soleus H reflex. Changes in the H reflex (Hoffmann’s reflex) after fixation of the knee and hip joints were also studied. In most subjects, passive movements were accompanied by bursts of electromyographic (EMG) activity in the hip muscles (sometimes in shank muscles); the timing of the EMG burst during the step cycle coincided with the burst’s timing during voluntary stepping. In many cases, the bursts in EMG activity exceeded the activity of homonymous muscles during voluntary stepping. Simulation of foot loading influenced significantly the distal part of the moving extremity during both voluntary and passive movements, which was expressed in the appearance of movements in the ankle joint and an increase in the phasic EMG activity of the shank muscles. The excitability of motoneurons during passive movements was higher than during voluntary movements. Changes and modulation of the H reflex throughout the step cycle were similar without restriction of joint mobility and without hip joint mobility. Fixation of the knee joint was of great importance. It is supposed that imposed movements activate the same mechanisms of rhythm generation as supraspinal commands during voluntary movements. During passive movements, presynaptic inhibition depends mostly on the afferent influences from the moving leg rather than on the central commands. Under the conditions of “air-stepping,” the afferent influences from the foot pressure receptors are likely to interact actively with the central program of stepping and to determine the final activity pattern irrespective of the movement type (voluntary or passive).  相似文献   

4.
A new way to develop muscular strength using electromagnetic stimulation (ES) of muscles during their voluntary contractions has been described. The experiment involved 18 healthy men divided into the control group (CG) and the experimental group (EG) with equal parameters of muscular strength. In performing training exercises (the foot plantar flexion), the m. gastrocnemius of the subjects of the EG was exposed to ES (1.8 T, 5 Hz). The subjects of the CG performing the same exercises did not receive ES. The power torque of the foot plantar flexion in the EG significantly increased (24%) after 10 days of training. The power torque of the foot plantar flexion in the control subjects did not significantly change. We suppose that the increase in the muscular strength in the subjects of the EG was due to the activation of high-threshold motor units effected by ES.  相似文献   

5.
The mechanism of onset of rebound after inhibition induced by electrical stimulation of a nerve of maximal and submaximal strength for M-response was studied in single motor units of normal human soleus, rectus femoris, and hand muscles. Poststimulus histograms and changes in the duration of interspike intervals were compared with mechanical recordings of muscle contractions. In all muscles tested, during strong isotonic contraction, the increase in motor unit activity after a silent period was partly due to synchronization of their emergence from inhibition. However, it also contained a component of true facilitation of motoneurons, which was evidently a reflex response to lengthening of the muscle in the relaxation phase after evoked contraction. The latent period of this facilitation in the soleus and rectus femoris muscles coincided in value with the latent period of the monosynaptic spinal reflex, whereas in the hand muscles, in which a monosynaptic response to electrical nerve stimulation could not be evoked, the latent period of facilitation as a result of spindle activation during muscle relaxation was significantly longer than the latent period of the monosynaptic reflex. These findings support the hypothesis of presynaptic suppression of monosynaptic connections of Ia afferents with the motoneurons of some human muscles by descending tonic influences and of the use of information coming from spindles by supraspinal levels of the CNS.  相似文献   

6.
This study examined the involvement of spinal mechanisms in the control of coactivation during a sustained contraction of the ankle dorsiflexors at 50% of maximal voluntary contraction. Changes in the surface electromyogram (EMG) of the tibialis anterior and of two antagonist muscles, the soleus and lateral gastrocnemius, were investigated during and after the fatigue task. Concurrently, the compound action potential (M-wave) and the Hoffmann reflex of the soleus and lateral gastrocnemius were recorded. The results showed that the torque of the ankle dorsiflexors and the average EMG of the tibialis anterior during maximal voluntary contraction declined by 40.9 +/- 17.7% (mean +/- SD; P < 0.01) and 37.0 +/- 19.9% (P < 0.01), respectively, at task failure. During the submaximal fatiguing contraction, the average EMG of both the agonist and antagonist muscles increased, leading to a nearly constant ratio at the end of the contraction when normalized to postfatigue values. In contrast to the monotonic increase in average EMG of the antagonist muscles, the excitability of their spinal reflex pathways exhibited a biphasic modulation. The amplitude of the Hoffman reflexes in the soleus and lateral gastrocnemius increased to 147.5 +/- 52.9% (P < 0.05) and 166.7 +/- 74.9% (P < 0.01), respectively, during the first 20% of the contraction and then subsequently declined to 66.3 +/- 44.8 and 74.4 +/- 44.2% of their initial values. In conclusion, the results show that antagonist coactivation did not contribute to task failure. The different changes in voluntary EMG activity and spinal reflex excitability in the antagonist muscles during the fatiguing contraction support the concept that the level of coactivation is controlled by supraspinal rather than spinal mechanisms. The findings indicate, however, that antagonist coactivation cannot simply be mediated by a central descending "common drive" to the motor neuron pools of the agonist-antagonist muscle pairs. Rather, they suggest a more subtle regulation of the drive, possibly through presynaptic mechanisms, to the motoneurons that innervate the antagonist muscles.  相似文献   

7.
The Hoffmann (H) reflex and motor (M) response were studied in soleus and gastrocnemius during voluntary contraction in eight male volunteers. Aims: To determine if the strength of spindle input to the muscles is the same. To assess if the M response size changes during contraction. Results: The size of the maximum M response (M max) changed during contraction in each subject. Hence, all H reflex measurements were normalized to the M max at each level of contraction for each subject. The largest H/M max was bigger in soleus than gastrocnemius at every contraction level. The overall largest H/M max for soleus (97%) and gastrocnemius (55%) were achieved at 40 and 100% maximum voluntary contraction (MVC), respectively. Conclusion: Soleus receives greater spindle feedback than the gastrocnemius both at rest and during voluntary contraction.  相似文献   

8.
In healthy humans, we recorded the H reflex induced by transcutaneous stimulation of the tibial nerve (recording from the soleus muscle). In subjects in the lying position, we studied changes in the H reflex values after preceding voluntary arm movements realized with a maximum velocity after presentation of an acoustic signal. On the 200th to 300th msec after forearm flexion, long-lasting inhibition of the H reflex developed following a period of initial facilitation and reached the maximum, on average, 700 msec from the moment of the movement. Flexion of the contralateral upper limb in the elbow joint induced deeper inhibition than analogous movement of the ipsilateral arm. Long-lasting clear inhibition of the H reflex developed after arm flexion in the elbow joint but was slightly expressed after finger clenching. After inhibition reached the maximum, its time course was satisfactorily approximated by a logarithmic function of the time interval between the beginning of the conditioning voluntary movement and presentation of the test stimulus. Durations of inhibition calculated using a regression equation were equal to 6.6 sec and 8.5 sec after ipsilateral and contralateral elbow-joint flexions, respectively. Inhibition was not eliminated under conditions of tonic excitation of motoneurons of the tested muscle upon voluntary foot flexion. Long-lasting inhibition of the H reflex was also observed after electrical stimulation-induced flexions of the upper limb. The obtained data indicate that movements of the upper limb cause reflex long-lasting presynaptic inhibition of the soleus-muscle H reflex that can play a noticeable role in redistribution of the muscle tone during motor activity. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 221–227, May–June, 2008.  相似文献   

9.
During a maximal isometric plantar flexion effort the moment measured at the dynamometer differs from the resultant ankle joint moment. The present study investigated the effects of contraction form and contraction velocity during isokinetic plantar/dorsal flexion efforts on the differences between resultant and measured moments due to the misalignment between ankle and dynamometer axes. Eleven male subjects (age: 31+/-6 years, mass: 80.6+/-9.6 kg, height: 178.4+/-7.4 cm) participated in this study. All subjects performed isometric-shortening-stretch-isometric contractions induced by electrical stimulation at three different angular velocities (25 degrees /s, 50 degrees /s and 100 degrees /s) on a customised dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 250 Hz. The resultant moments at the ankle joint were calculated through inverse dynamics. The relative differences between resultant and measured ankle joint moments due to axis misalignment were fairly similar in all phases of the isometric-shortening-stretch-isometric contraction (in average 5-9% of the measured moment). Furthermore these findings were independent of the contraction velocity. During dynamic plantar/dorsal flexion contractions the differences between measured and resultant joint moment are high enough to influence conclusions regarding the mechanical response of ankle extensor muscles. However the relative differences were not increased during dynamic contractions as compared to isometric contractions.  相似文献   

10.
In electromyographic studies on healthy subjects, we recorded the H reflex from the right m. soleus and measured changes in the magnitude of this reflex response related to voluntary movements of the contralateral lower limb performed according to a visual signal. The effects of back and plantar flexions of the contralateral foot of the tested subject in the lying and standing positions were examined. Changes in the H reflex magnitude began to be recorded 60 to 90 msec prior to voluntary movements of the contralateral limb. When the subject was in the lying position, these changes looked like facilitation of the H reflex at both types of movement of the contralateral foot. When the subject stood, facilitation preceded back flexion of the foot of this extremity, while plantar flexion was preceded by inhibition of the tested H reflex. Our results show that the pattern of preliminary changes in the muscle tone of one of the lower limbs is determined by the type of future movement of another limb and peculiarities of the support function realized by this limb.  相似文献   

11.
The aim of this study was to examine the effects of muscle fibre composition on muscle sympathetic nerve activity (MSNA) in response to isometric exercise. The MSNA, recorded from the tibial nerve by a microneurographic technique during contraction and following arterial occlusion, was compared in three different muscle groups: the forearm (handgrip), anterior tibialis (foot dorsal contraction), and soleus muscles (foot plantar contraction) contracted separately at intensities of 20%, 33% and 50% of the maximal voluntary force. The increases in MSNA relative to control levels during contraction and occlusion were significant at all contracting forces for handgrip and at 33% and 50% of maximal for dorsal contraction, but there were no significant changes, except during exercise at 50%, for plantar contraction. The size of the MSNA response correlated with the contraction force in all muscle groups. Pooling data for all contraction forces, there were different MSNA responses among muscle groups in contraction forces (P = 0.0001, two-way analysis of variance), and occlusion periods (P = 0.0001). The MSNA increases were in the following order of magnitude: handgrip, dorsal, and plantar contractions. The order of the fibre type composition in these three muscles is from equal numbers of types I and II fibres in the forearm to increasing number of type I fibres in the leg muscles. The different MSNA responses to the contraction of different muscle groups observed may have been due in part to muscle metaboreflex intensity influenced by their metabolic capacity which is related to by their metabolic capacity which is related to the fibre type.  相似文献   

12.
At the onset of dorsiflexion disynaptic reciprocal inhibition (DRI) of soleus motoneurons is increased to prevent activation of the antagonistic plantar flexors. This is caused by descending facilitation of transmission in the DRI pathway. Because the risk of eliciting stretch reflexes in the ankle plantar flexors at the onset of dorsiflexion is larger the quicker the movement, it was hypothesized that DRI may be increased when subjects are trained to perform dorsiflexion movements as quickly as possible For this purpose, 14 healthy human subjects participated in explosive strength training of the ankle dorsiflexor muscles 3 times a week for 4 wk. Test sessions were conducted before, shortly after, and 2 wk after the training period. The rate of torque development measured at 30, 50, 100, and 200 ms after onset of voluntary explosive isometric dorsiflexion increased by 24-33% (P < 0.05). DRI was measured as the depression of the soleus H reflex following conditioning stimulation of the peroneal nerve (1.1 x motor threshold) at an interval of 2-3 ms. At the onset of dorsiflexion the amount of DRI measured relative to DRI at rest increased significantly from 6% before the training to 22% after the training (P < 0.05). We speculate that DRI at the onset of movement may be increased in healthy subjects following explosive strength training to ensure efficient suppression of the antagonist muscles as the dorsiflexion movement becomes faster.  相似文献   

13.
This study was designed to investigate the sites of potential specific modulations in the neural control of lengthening and subsequent isometric maximal voluntary contractions (MVCs) versus purely isometric MVCs of the plantar flexor muscles, when there is enhanced torque during and following stretch. Ankle joint torque during maximum voluntary plantar flexion was measured by a dynamometer when subjects (n = 10) lay prone on a bench with the right ankle tightly strapped to a foot-plate. Neural control was analysed by comparing soleus motor responses to electrical nerve stimulation (M-wave, V-wave), electrical stimulation of the cervicomedullary junction (CMEP) and transcranial magnetic stimulation of the motor cortex (MEP). Enhanced torque of 17±8% and 9±8% was found during and 2.5–3 s after lengthening MVCs, respectively. Cortical and spinal responsiveness was similar to that in isometric conditions during the lengthening MVCs, as shown by unchanged MEPs, CMEPs and V-waves, suggesting that the major voluntary motor pathways are not subject to substantial inhibition. Following the lengthening MVCs, enhanced torque was accompanied by larger MEPs (p≤0.05) and a trend to greater V-waves (p≤0.1). In combination with stable CMEPs, increased MEPs suggest an increase in cortical excitability, and enlarged V-waves indicate greater motoneuronal output or increased stretch reflex excitability. The new results illustrate that neuromotor pathways are altered after lengthening MVCs suggesting that the underlying mechanisms of the enhanced torque are not purely mechanical in nature.  相似文献   

14.
A rapid plantar flexion perturbation applied to the ankle during the stance phase of the step cycle during human walking unloads the ankle extensors and produces a marked decline in the soleus EMG. This demonstrates that sensory activity contributes importantly to the enhancement of the ankle extensor muscle activation during human walking. On average, the EMG begins to decline approximately 52 ms after the perturbation. In contrast, a rapid dorsi flex ion perturbation produces a group Ia mediated short-latency stretch reflex burst with an onset latency of approximately 36 ms. The transmission of sensory traffic from the foot and ankle was suppressed in 10 subjects by an anaesthetic nerve block produced with local injections of lidocaine hydrochloride. The anaesthetic block had no effect on the stance phase soleus EMG, the latencies of the EMG responses, or the magnitude of the EMG decline following the plantar flexion perturbation. Therefore, it is more likely that proprioceptive afferents, rather than cutaneous afferents, contribute to the background soleus EMG during the late stance phase of the step cycle. The large difference in onset latencies between the short-latency reflex and unload responses suggests that the largest of the active group Ia afferents might not contribute strongly to the background soleus EMG, although it remains to be determined which of the proprioceptive pathways provide the more important contributions.  相似文献   

15.
Abstract

We aimed to investigate whether motor learning induces different excitability changes in the human motor cortex (M1) between two different muscle contraction states (before voluntary contraction [static] or during voluntary contraction [dynamic]). For the same, using motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS), we compared excitability changes during these two states after pinch-grip motor skill learning. The participants performed a force output tracking task by pinch grip on a computer screen. TMS was applied prior to the pinch grip (static) and after initiation of voluntary contraction (dynamic). MEPs of the following muscles were recorded: first dorsal interosseous (FDI), thenar muscle (Thenar), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles. During both the states, motor skill training led to significant improvement of motor performance. During the static state, MEPs of the FDI muscle were significantly facilitated after motor learning; however, during the dynamic state, MEPs of the FDI, Thenar, and FCR muscles were significantly decreased. Based on the results of this study, we concluded that excitability changes in the human M1 are differentially influenced during different voluntary contraction states (static and dynamic) after motor learning.  相似文献   

16.

Background

Corticospinal excitability of the primary motor cortex (M1) representing the hand muscle is depressed by bilateral lower limb muscle fatigue. The effects of fatiguing unilateral lower limb contraction on corticospinal excitability and transcallosal inhibition in the M1 hand areas remain unclear. The purpose of this study was to determine the effects of fatiguing unilateral plantar flexions on corticospinal excitability in the M1 hand areas and transcallosal inhibition originated from the M1 hand area contralateral to the fatigued ankle.

Methods

Ten healthy volunteers (26.2 ± 3.8 years) participated in the study. Using transcranial magnetic stimulation, we examined motor evoked potentials (MEPs) and interhemispheric inhibition (IHI) recorded from resting first dorsal interosseous (FDI) muscles before, immediately after, and 10 min after fatiguing unilateral lower limb muscle contraction, which was consisted of 40 unilateral maximal isometric plantar flexions intermittently with a 2-s contraction followed by 1 s of rest.

Results

We demonstrated no significant changes in MEPs in the FDI muscle ipsilateral to the fatigued ankle and decrease in IHI from the M1 hand area contralateral to the fatigued ankle to the ipsilateral M1 hand area after the fatiguing contraction. MEPs in the FDI muscle contralateral to the fatigued ankle were increased after the fatiguing contraction.

Conclusions

These results suggest that fatiguing unilateral lower limb muscle contraction differently influences corticospinal excitability of the contralateral M1 hand area and IHI from the contralateral M1 hand area to the ipsilateral M1 hand area. Although fatiguing unilateral lower limb muscle contraction increases corticospinal excitability of the ipsilateral M1 hand area, the increased corticospinal excitability is not associated with the decreased IHI.  相似文献   

17.
Following active muscle lengthening, steady-state isometric force is elevated compared with an isometric contraction without prior lengthening for the same muscle length and activation level. This property of muscle contraction is known as residual force enhancement (RFE). Here, we aimed to determine whether neural factors may mask some of the mechanical benefits of RFE on plantar flexion torque production. Inherent to lengthening contractions is an increase in cortical and spinal-mediated inhibition, while knee flexion places the medial gastrocnemius at a neuromechanical disadvantage. Neuromuscular properties of the plantar flexors were investigated with a Humac Norm dynamometer in 10 males (∼27 years) with a flexed (90°) and extended (180°) knee and with or without calcaneal tendon vibration (frequency range: 80–110 Hz). There was no effect for vibration (p > 0.05), but there was an effect for knee angle (p < 0.05) such that there was a 2 fold increase in RFE with the knee flexed compared with extended. During submaximal torque matching, following active lengthening there was an activation reduction (electromyography; EMG) of 7.2 and 4.7% with the knee flexed and extended, respectively for soleus as compared with the reference isometric contraction, but no difference for the medial gastrocnemius. Despite attempting to excite Ia input onto the plantar flexor motor neuron pool, vibration had no influence on RFE. Surprisingly, RFE was elevated more for the knee flexed than extended, which was possibly owing to the activation differences across the disparate muscles of the triceps surae during the plantar flexion task.  相似文献   

18.
Electromyographic recordings of contralateral m. gastrocnemius of the rat after unilateral section of Achilles' tendon (tenotomy) were studied. Motor reflex, Hoffman reflex and firing of motor units of contralateral m. gastrocnemius were recorded in control and in 10 days after tendotomy. Motor units changed their firing in the background and in reaction to sciatic nerve stimulation. The results of study showed that unilateral section of Achilles' tendon increased the excitability of single motoneurons of contralateral spinal senters.  相似文献   

19.
This study employed longitudinal measures of evoked spinal reflex responses (Hoffman reflex, V wave) to investigate changes in the activation of muscle and to determine if there are "linked" neural adaptations in the motor pathway following isometric resistance training. Twenty healthy, sedentary males were randomly assigned to either the trained (n = 10) or control group (n = 10). The training protocol consisted of 12 sessions of isometric resistance training of the plantar flexor muscles over a 4-wk period. All subjects were tested prior to and after the 4-wk period. To estimate changes in spinal excitability, soleus Hoffman (H) reflex and M wave recruitment curves were produced at rest and during submaximal contractions. Recruitment curves were analyzed using the slope method (Hslp/Mslp). Modulation of efferent neural drive was assessed through evoked V wave responses (V/Mmax) at 50, 75, and 100% maximal voluntary contraction (MVC). After 4 weeks, MVC torque increased 20.0 +/- 13.9% (mean +/- SD) in the trained group. The increase in MVC was accompanied by significant increases in the rate of torque development (42.5 +/- 13.3%), the soleus surface electromyogram (60.7 +/- 30.8%), voluntary activation (2.8 +/- 0.1%), and the rate of activation (48.7 +/- 24.3%). Hslp/Mslp was not altered by training; however, V/Mmax increased 57.3 +/- 34.2% during MVC. These results suggest that increases in MVC observed in the first few days of isometric resistance training can be accounted for by an increase in the rate of activation at the onset of muscle contraction. Augmentation of muscle activation may be due to increased volitional drive from supraspinal centers.  相似文献   

20.
The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号