首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Y(Z)-tyrosine radical was trapped by freezing immediately after illumination in Ca(2+)-depleted Photosystem II (PS II) membranes and the pH-dependent characteristics of the radical were investigated using CW-EPR and pulsed ENDOR. The spectrum of the Y*(Z) radical trapped in the Y*(Z)S(1) state at pH 5.5 was cation-like as reported in Mn-depleted PS II (H. Mino et al., Spectrochim. Acta A 53 (1997) 1465-1483). By illuminating the PS II-retaining S(2) state, the Y*(Z) radical and a broad doublet signal formed in the g approximately 2 region were trapped concomitantly. The spectrum of the trapped Y*(Z) radical in the Y*(Z)S(2) state was cation-like at pH 5.5 but the pulsed ENDOR measurements reveals the involvement of the neutral Y*(Z) radical in the doublet signal. At pH 7.0, the resulting Y*(Z) signal was the mixture of the cation-like and neutral radical spectra, and considerably different from the neutral radical found in Mn-depleted PS II. pH-Dependent changes in the properties of the Y*(Z) radical are discussed in relation to the redox events occurring in Ca(2+)-depleted PS II.  相似文献   

2.
The parallel polarization electron paramagnetic resonance (EPR) method has been applied to investigate manganese EPR signals of native S1 and S3 states of the water oxidizing complex (WOC) in photosystem (PS) II. The EPR signals in both states were assigned to thermally excited states with S=1, from which zero-field interaction parameters D and E were derived. Three kinds of signals, the doublet signal, the singlet-like signal and g=11-15 signal, were detected in Ca2+-depleted PS II. The g=11-15 signal was observed by parallel and perpendicular modes and assigned to a higher oxidation state beyond S2 in Ca2+-depleted PS II. The singlet-like signal was associated with the g=11-15 signal but not with the Y(Z) (the tyrosine residue 161 of the D1 polypeptide in PS II) radical. The doublet signal was associated with the Y(Z) radical as proved by pulsed electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. The electron transfer mechanism relevant to the role of Y(Z) radical was discussed.  相似文献   

3.
Ono T  Rompel A  Mino H  Chiba N 《Biophysical journal》2001,81(4):1831-1840
Effects of adding monovalent alkali metal cations to Ca(2+)-depleted photosystem (PS)II membranes on the biochemical and spectroscopic properties of the oxygen-evolving complex were studied. The Ca(2+)-dependent oxygen evolution was competitively inhibited by K(+), Rb(+), and Cs(+), the ionic radii of which are larger than the radius of Ca(2+) but not inhibited significantly by Li(+) and Na(+), the ionic radii of which are smaller than that of Ca(2+). Ca(2+)-depleted membranes without metal cation supplementation showed normal S(2) multiline electron paramagnetic resonance (EPR) signal and an S(2)Q(A)(-) thermoluminescence (TL) band with a normal peak temperature after illumination under conditions for single turnover of PSII. Membranes supplemented with Li(+) or Na(+) showed properties similar to those of the Ca(2+)-depleted membranes, except for a small difference in the TL peak temperatures. The peak temperature of the TL band of membranes supplemented with K(+), Rb(+), or Cs(+) was elevated to approximately 38 degrees C which coincided with that of Y(D)(+)Q(A)(-) TL band, and no S(2) EPR signals were detected. The K(+)-induced high-temperature TL band and the S(2)Q(A)(-) TL band were interconvertible by the addition of K(+) or Ca(2+) in the dark. Both the Ca(2+)-depleted and the K(+)-substituted membranes showed the narrow EPR signal corresponding to the S(2)Y(Z)(+) state at g = 2 by illuminating the membranes under multiple turnover conditions. These results indicate that the ionic radii of the cations occupying Ca(2+)-binding site crucially affect the properties of the manganese cluster.  相似文献   

4.
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.  相似文献   

5.
We have studied how low pH affects the water-oxidizing complex in Photosystem II when depleted of the essential Ca(2+) ion cofactor. For these samples, it was found that the EPR signal from the Y(Z)(*) radical decays faster at low pH than at high pH. At 20 degrees C, Y(Z)(*) decays with biphasic kinetics. At pH 6.5, the fast phase encompasses about 65% of the amplitude and has a lifetime of approximately 0.8 s, while the slow phase has a lifetime of approximately 22 s. At pH 3.9, the kinetics become totally dominated by the fast phase, with more than 90% of the signal intensity operating with a lifetime of approximately 0.3 s. The kinetic changes occurred with an approximate pK(a) of 4.5. Low pH also affected the induction of the so-called split radical EPR signal from the S(2)Y(Z)(*) state that is induced in Ca(2+)-depleted PSII membranes because of an inability of Y(Z)(*) to oxidize the S(2) state. At pH 4.5, about 50% of the split signal was induced, as compared to the amplitude of the signal that was induced at pH 6.5-7, using similar illumination conditions. Thus, the split-signal induction decreased with an apparent pK(a) of 4.5. In the same samples, the stable multiline signal from the S(2) state, which is modified by the removal of Ca(2+), was decreased by the illumination to the same extent at all pHs. It is proposed that decreased induction of the S(2)Y(Z)(*) state at lower pH was not due to inability to oxidize the modified S(2) state induced by the Ca(2+) depletion. Instead, we propose that the low pH makes Y(Z)(*) able to oxidize the S(2) state, making the S(2) --> S(3) transition available in Ca(2+)-depleted PSII. Implications of these results for the catalytic role of Ca(2+) and the role of proton transfer between the Mn cluster and Y(Z) during oxygen evolution is discussed.  相似文献   

6.
Zhang C  Styring S 《Biochemistry》2003,42(26):8066-8076
The effect of illumination at 5 K of photosystem II in different S-states was investigated with EPR spectroscopy. Two split radical EPR signals around g approximately 2.0 were observed from samples given 0 and 3 flashes, respectively. The signal from the 0-flash sample was narrow, with a width of approximately 80 G, in which the low-field peak can be distinguished. This signal oscillated with the S(1) state in the sample. The signal from the 3-flash sample was broad, with a symmetric shape of approximately 160 G width from peak to trough. This signal varied with the concentration of the S(0) state in the sample. Both signals are assigned to arise from the donor side of PSII. Both signals relaxed fast, were formed within 10 ms after a flash, and decayed with half-times at 5 K of 3-4 min. The signal in the S(0) state closely resembles split radical signals, originating from magnetic interaction between Y(Z)(*) and the S(2) state, that were first observed in Ca(2+)-depleted photosystem II samples. Therefore, we assign this signal to Y(Z)(*) in magnetic interaction with the S(0) state, Y(Z)(*)S(0). The other signal is assigned to the magnetic interaction between Y(Z)(*) and the S(1) state, Y(Z)(*)S(1). An important implication is that Y(Z) can be oxidized at 5 K in the S(0) and S(1) states. Oxidation of Y(Z) involves deprotonation of the tyrosine. This is restricted at 5 K, and we therefore suggest that the phenolic proton of Y(Z) is involved in a low-barrier hydrogen bond. This is an unusually short hydrogen bond in which proton movement at very low temperatures can occur.  相似文献   

7.
Nugent JH  Muhiuddin IP  Evans MC 《Biochemistry》2003,42(18):5500-5507
Previous work in many laboratories has established that hydroxylamine reduces the S(1) state of the water oxidizing complex (WOC) in one-electron steps. Significant levels of what can now be defined as the S(-1)* state are achieved by specific (concentration and incubation length) hydroxylamine treatments. This state has already been studied by electron paramagnetic resonance spectrometry (EPR), and unusual EPR signals were noted (for example, see Sivaraja, M., and Dismukes, G. C. (1988) Biochemistry 27, 3467-3475). We have now reinvestigated these initial experiments and confirmed many of the original observations. We then utilized more recent EPR markers for the S(0) and S(1) states to further explore the S(-1)* state. The broad radical "split" type EPR signal, produced by 200 K illumination of samples prepared to give a high yield of the S(-1)* state, is shown to most likely reflect a trapped intermediate state between S(-1)* and S(0)*, since samples where this signal is present can be warmed in the dark to produce S(0)*. The threshold for advancement from S(-1)* to S(0)* is near 200 K, as the yield of broad radical decreases and S(0)* multiline EPR signal increases with length of 200 K illumination. Advancement of S(0)* to S(1) is limited at 200 K, but S(1) can be restored by 273 K illumination. Illumination of these hydroxylamine-treated samples at temperatures below 77 K gives a second broad radical EPR signal. The line shape, decay, and other properties of this new radical signal suggest that it may arise from an interaction in the S(-2)* or lower S states, which are probably present in low yield in these samples. Illumination below 20 K of S(0)* state samples containing methanol, and therefore exhibiting the S(0) multiline signal, gives rise to a third broad radical with distinctive line shape. The characteristics of the three broad radicals are similar to those found from interactions between Y(Z)(*) and other S states. The evidence is presented that they do represent intermediate states in S state turnover. Further work is now needed to identify these radicals.  相似文献   

8.
Geijer P  Morvaridi F  Styring S 《Biochemistry》2001,40(36):10881-10891
Here we report an EPR signal that is induced by a pH jump to alkaline pH in the S(3) state of the oxygen-evolving complex in photosystem II. The S(3) state is first formed with two flashes at pH 6. Thereafter, the pH is changed in the dark prior to freezing of the sample. The EPR signal is 90-100 G wide and centered around g = 2. The signal is reversibly induced with a pK = 8.5 +/- 0.3 and is very stable with a decay half-time of 5-6 min. If the pH is changed in the dark from pH 8.6 to 6.0, the signal disappears although the S(3) state remains. We propose that the signal arises from the interaction between the Mn cluster and Y(Z), resulting in the spin-coupled S(2)Y(Z)(*) signal. Our data suggest that the potential of the Y(Z)(*)/Y(Z) redox couple is sensitive to the ambient pH in the S(3) state. The alkaline pH decreases the potential of the Y(Z)(*)/Y(Z) couple so that Y(Z) can give back an electron to the S(3) state, thereby obtaining the S(2)Y(Z)(*) EPR signal. The tyrosine oxidation also involves proton release from Y(Z), and the results support a mechanism where this proton is released to the bulk medium presumably via a close-lying base. Thus, the equilibrium is changed from S(3)Y(Z) to S(2)Y(Z)(*) by the alkaline pH. At normal pH (pH 5.5-7), this equilibrium is set strongly to the S(3)Y(Z) state. The results are discussed in relation to the present models of water oxidation. Consequences for the relative redox potentials of Y(Z)(*)/Y(Z) and S(3)/S(2) at different pH values are discussed. We also compare the pH-induced S(2)Y(Z)(*) signal with the S(2)Y(Z)(*) signal from Ca(2+)-depleted photosystem II.  相似文献   

9.
Electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) were performed to investigate the difference in microenvironments and functions between tyrosine Z (Y(Z)) and tyrosine D (Y(D)). Mn-depletion or Ca(2+)-depletion causes extension of the lifetime of tyrosine radical Y(Z)(*), which can be trapped by rapid freezing after illumination at about 250 K. Above pH 6.5, Y(Z)(*) radical in Mn-depleted PS II shows similar EPR and ENDOR spectra similar to that of Y(D)(*) radical, which are ascribed to a typical neutral tyrosine radical. Below pH 6.5, Y(Z)(*) radical shows quite different EPR and ENDOR spectra. ENDOR spectra show the spin density distribution of the low-pH form of Y(Z)(*) that has been quite different from the high-pH form of Y(Z)(*). The spin density distribution of the low-pH Y(Z)(*) can be explained by a cation radical or the neutral radical induced by strong electrostatic interaction. The pH dependence of the activation energy of the recombination rate between Y(Z)(*) and Q(A)(-) shows a gap of 4.4 kJ/mol at pH 6.0-6.5. In the Ca(2+)-depleted PS II, Y(Z)(*) signal was the mixture of the cation-like and normal neutral radicals, and the pH dependence of Y(Z)(*) spectrum in Ca(2+)-depleted PS II is considerably different from the neutral radical found in Mn-depleted PS II. Based on the recent structure data of cyanobacterial PS II, the pH dependence of Y(Z)(*) could be ascribed to the modification of the local structure and hydrogen-bonding network induced by the dissociation of ASP170 near Y(Z).  相似文献   

10.
Illuminating of the Ca(2+)-depleted PS II in the S(2) state for a short period induced the doublet signal at g=2 with concomitant diminution of the multiline signal, both in the presence and absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). In the absence of DCMU, the doublet signal decayed (t(1/2) approximately 7 min) during subsequent dark incubation at 273 K and the multiline signal was regenerated to the original amplitude with the same kinetics of the doublet decay. In the presence of DCMU, the doublet signal decayed much faster (t(1/2) approximately 1 min) by charge recombination with Q(A)(-), while the time course of the multiline recovery was inherently identical with that observed in the absence of DCMU. A simple theoretical consideration indicates the direct conversion from the doublet-signal state to the multiline state with no intermediate state between them. Lengthy dark storage at 77 K led to disappearance of the DCMU-affected doublet signal and a Fe(2+)/Q(A)(-) electron spin resonance (ESR) signal, but no recovery of the multiline signal. Notably, the multiline signal was restored by subsequent dark incubation at 273 K. The charge recombination between Q(A)(-) and the doublet signal species led to a thermoluminescence band at 7 degrees C in a medium at pH 5.5. The peak position shifted to 17 degrees C at pH 7.0, presumably due to a pH-dependent change in the redox property of a donor-side radical species responsible for the doublet signal. Based on these results, redox events in the Ca(2+)-depleted PS II are discussed in contradistinction with the normal processes in oxygen-evolving PS II.  相似文献   

11.
S-State-dependent split EPR signals that are induced by illumination at cryogenic temperatures (5 K) have been measured in spinach photosystem II without interference from the Y(D)* radical in the g approximately 2 region. This allows us to present the first decay-associated spectra for the split signals, which originate from the CaMn4 cluster in magnetic interaction with a nearby radical, presumably Y(Z)*. The three split EPR signals that were investigated, "Split S1", "Split S3", and Split S0", all exhibit spectral features at g approximately 2.0 together with surrounding characteristic peaks and troughs. From microwave relaxation studies we can reach conclusions about which parts of the complex spectra belong together. Our analysis strongly indicates that the wings and the middle part of the split spectrum are parts of the same signal, since their decay kinetics in the dark at 5 K and microwave relaxation behavior are indistinguishable. In addition, our decay-associated spectra indicate that the g approximately 2.0 part of the "Split S1" EPR spectrum contains a contribution from magnetically uncoupled Y(Z)* as judged from the g value and 22 G line width of the EPR signal. The g value, 2.0033-2.0040, suggests that the oxidation of Y(Z) at 5 K results in a partially protonated radical. Irrespective of the S state, a small amount of a carotenoid or chlorophyll radical was formed by the illumination. However, this had relaxation and decay characteristics that clearly distinguish this radical from the split signal spectra. In this paper, we present the "clean" spectra from the low-temperature illumination-induced split EPR signals from higher plants, which will provide the basis for further simulation studies.  相似文献   

12.
T Ono  S Izawa  Y Inoue 《Biochemistry》1992,31(33):7648-7655
Depletion of functional Ca2+ from photosystem (PS) II membranes impairs O2 evolution. Redox properties of the Mn cluster as probed by thermoluminescence were modified differently in Ca(2+)-depleted PSII depending on the procedure for Ca2+ extraction. Ca2+ depletion by low-pH treatment gave rise to an abnormally modified S2 state exhibiting a thermoluminescence band with elevated peak temperature accompanied by a marked upshift in threshold temperature for its formation, whereas Ca2+ depletion by NaCl washing in the light followed by the addition of EDTA could generate a similarly modified S2 state only when the Ca(2+)-depleted PSII was reconstituted with the 24-kDa extrinsic proteins. These results indicated that manifestation of the abnormal properties of the Ca(2+)-depleted S2 state is significantly contributed by the association of the 24-kDa extrinsic protein to PSII. It was inferred that the 24-kDa extrinsic protein regulates the structure and function of the Mn cluster in the absence of functional Ca2+ through a conformational modulation of the intrinsic protein(s) that bind(s) both Mn and Ca. Features of the extrinsic protein-dependent modulation of the Mn cluster were discussed in relation to the function of Ca2+ in O2 evolution.  相似文献   

13.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

14.
The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.  相似文献   

15.
Inhibitory treatment by acetate, followed by illumination and rapid freezing, is known to trap the S(2)Y(Z)(*) state of the O(2)-evolving complex (OEC) in photosystem II (PS II). An EPR spectrum of this state exhibits broad split signals due to the interaction of the tyrosyl radical, Y(Z)(*), with the S = 1/2 S(2) state of the Mn(4) cluster. We present a novel approach to analyze S(2)Y(Z)(*) spectra of one-dimensionally (1-D) oriented acetate-inhibited PS II membranes to determine the magnitude and relative orientation of the S(2)Y(Z)(*) dipolar vector within the membrane. Although there exists a vast body of EPR data on isolated spins in oriented membrane sheets, the present study is the first of its kind on dipolar-coupled electron spin pairs in such systems. We demonstrate the feasibility of the technique and establish a rigorous treatment to account for the disorder present in partially oriented 1-D membrane preparations. We find that (i) the point-dipole distance between Y(Z)(*) and the Mn(4) cluster is 7.9 +/- 0.2 A, (ii) the angle between the interspin vector and the thylakoid membrane normal is 75 degrees, (iii) the g(z)()-axis of the Mn(4) cluster is 70 degrees away from the membrane normal and 35 degrees away from the interspin vector, and (iv) the exchange interaction between the two spins is -275 x 10(-)(4) cm(-)(1), which is antiferromagnetic. Due to the sensitivity of EPR line shapes of oriented spin-coupled pairs to the interspin distance, the present study imposes a tighter constraint on the Y(Z)-Mn(4) point-dipole distance than obtained from randomly oriented samples. The geometric constraints obtained from the 1-D oriented sample are combined with published models of the structure of Mn-depleted PS II to propose a location of the Mn(4) cluster. A structure in which Y(Z) is hydrogen bonded to a manganese-bound hydroxide ligand is consistent with available data and favors maximal orbital overlap between the two redox center that would facilitate direct electron- and proton-transfer steps.  相似文献   

16.
17.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

18.
Y Kimura  T Ono 《Biochemistry》2001,40(46):14061-14068
Fourier transform infrared (FTIR) spectroscopy has been applied toward studies of photosynthetic oxygen evolution, especially on the effects of Ca(2+) depletion and chelating agents using S(2)/S(1) FTIR difference spectrum in the mid-IR region. Ca(2+) depletion showed little influences on the symmetric (1365/1404 cm(-1)) and the asymmetric (1587/1562 cm(-1)) stretching bands of a carboxylate, which are typical of the S(2)/S(1) vibrational features induced by the oxidation of the Mn-cluster; however, minor changes were observed in the amide regions. Addition of a chelating agent (EDTA or EGTA) to the Ca(2+)-depleted membranes resulted in the disappearance of the carboxylate bands concurrent with large modifications of the amide bands with an apparent K(d) value of approximately 0.49 mM (for EDTA). The carboxylate bands and the greater part of the amide bands were restored by the replenishment of CaCl(2), and the chelators did not affect the spectrum in the nondepleted control membranes, indicating that the effects of the chelator are reversible and manifest only in the cases in which the Ca(2+) site is unoccupied by Ca(2+). Ca(2+)-depleted membranes showed the normal S(2)Q(A)(-) thermoluminescence band, and further addition of EDTA did not show any effects on the peak temperature and peak intensity. Moreover, the Ca(2+)-depleted membranes in the presence of EDTA exhibited the S(2) multiline EPR signal with nearly the normal hyperfine splittings. These results demonstrated that the Mn-cluster is oxidized to the S(2) state with normal redox and magnetic properties in the presence of the chelator despite the loss of the carboxylate bands in the FTIR spectra. The results are interpreted as indicating that the chelator interacts with the Mn-cluster as a replacement of the native carboxylate ligand. This prevents the structural changes of the Mn-cluster and protein backbone which are induced upon the oxidation of the Mn-cluster up to the S(2) state, but preserve the redox and magnetic properties of the S(2) state Mn-cluster. The roles of Ca(2+) in the photosynthetic oxygen evolution are also discussed.  相似文献   

19.
Chloride is an essential cofactor for the oxidation of water to oxygen. Anion substitution (Br(-), I(-), NO(2)(-), F(-)) in Cl(-)-depleted PS II membranes brings out significant changes in the EPR signals arising from the S(2) state and from the iron-quinone complex of PS II. On the basis of the changes observed in the S(2) state multiline signal and the Q(A)Fe(3+) EPR signal in Cl(-)-depleted PS II membranes after substituting with various anions, we report a possible binding site of anions such as chloride and bromide at the PS II donor side as well as at the acceptor side.  相似文献   

20.
Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号