首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ovarian changes determined by daily transrectal ultrasound and its relationship with FSH, LH, estradiol-17beta, progesterone, and inhibin were investigated in six goats for three consecutive interovulatory intervals. Estrous cycles were synchronized using two injections of prostaglandin F2alpha analogue 11 days apart. All follicles 3 mm or greater in diameter and corpora lutea were measured daily. A follicular wave was defined as one or more follicles growing to 5 mm or greater in diameter. The day that the follicles reached 3 mm in diameter was defined as the day of wave emergence, and the first wave after ovulation was defined as wave 1. During the interovulatory interval (mean +/- SEM, 21.3 +/- 0.4 days; n = 18), follicular waves emerged at 0.3 +/- 0.5, 6.5 +/- 0.2, and 12.1 +/- 0.4 days for wave 1, wave 2, and wave 3, respectively, in goats with three waves of follicular development and at -0.6 +/- 0.3, 4.7 +/- 0.2, 9.4 +/- 0.5, and 13.4 +/- 0.5 days for wave 1, wave 2, wave 3, and wave 4, respectively, in goats with four waves of follicular development (Day 0 = the day of ovulation). The mean diameter of the largest follicle of the ovulatory wave was significantly larger than those of the largest follicles of the other waves. Corpora lutea could be identified ultrasonically at Day 3 postovulation and attained 12.1 +/- 0.3 mm in diameter on Day 8. Transient increases in plasma concentrations of FSH were detected around the day of follicular wave emergence. The level of FSH was negatively correlated with that of inhibin. These results demonstrated that follicular waves occurred in goats and that the predominant follicular wave pattern was four waves with ovulation from wave 4. These results also suggested that the emergence of follicular waves was closely associated with increased secretion of FSH.  相似文献   

2.
Ovaries were recovered from two groups (n=6/group) of anoestrous Romney Marsh ewes, one group of which had been treated with progesterone implants prior to slaughter. A comparison was made between the maturational characteristics of the follicles > 2 mm diameter recovered from both groups and some significant differences were noted. In particular, the large follicles (> 4 mm diameter) recovered from the progesterone-treated ewes had a significantly (P<0.01) reduced capacity to secrete oestradiol, but enhanced (P<0.01) ability to bind hCG when compared to follicles recovered from control ewes. There were also differences in the relationships between follicular characteristics in the two groups of animals including a significant (P <0.05) correlation between follicular fluid progesterone and hCG binding to theca tissue in large follicles from progesterone-treated animals which did not exist in the control animals. Conversely, in the control animals a significant (P<0.05) relationship existed between oestradiol production and hCG binding to granulosa cells, but there was no such relationship in the follicles from progesterone-treated ewes. These results demonstrate that the treatment of ewes with progesterone during the anoestrous period clearly affects oestradiol synthesis and hCG binding and thus modifies follicular development.  相似文献   

3.
4.
The establishment of ovarian activity during lactation was studied in the postpartum period of Rambouillet, Dorset and Finnish Landrace ewes following lambing during the month of October (1981). The mean postpartum intervals to first ovulation and first estrus were 22.7 and 53.0 for Rambouillets, 25.2 and 51.0 for Dorsets, and 22.5 and 49.7 days for Finnish Landrace ewes. Estrus was not associated with the first ovulation postpartum in any breed. The number of silent ovulations prior to the first estrus was highest in the Rambouillet and lowest in Finnish Landrace breeds. Of the 18 ewes in the project, 14 had normal luteal phase lengths, 1 had a possible short luteal phase and 3 had prolonged luteal phases following the first ovulation postpartum. The first service conception rate of all ewes bred was 82% (14 17 ) at an average of 52 days postpartum. The lambing rate following the autumn breeding was higher (2.14 +/- 0.14) than the lambing rate which followed the previous spring breeding (1.28 +/- 0.11).  相似文献   

5.
The specific requirement for FSH in the final stages of preovulatory follicle development was assessed in seasonally anoestrous ewes given 2-h injections of GnRH (250 ng/injection), with (N = 10) or without (N = 10) concurrent treatment with bovine follicular fluid (bFF: 2 ml given i.v. at 8-h intervals). Treatment with bFF significantly (P less than 0.01) suppressed plasma FSH concentrations, but, at least for the first 30 h of treatment, did not influence the magnitude of GnRH-induced LH episodes (mean max. conc. 3.00 +/- 0.39 and 3.63 +/- 0.51 ng/ml for bFF-treated and control ewes, respectively). Of 10 animals treated with GnRH for 72 h, 5/5 control ewes showed oestrus and ovulated whereas 0/5 bFF-treated ewes showed oestrus or ovulated in response to GnRH treatment. There was, however, a transient (13.2 +/- 1.0 h) increase in plasma LH concentrations in the ewes given bFF (mean max. conc. 4.64 +/- 1.57 ng/ml), which was coincident with the preovulatory LH surge recorded in animals given GnRH alone. In 10 GnRH-treated ewes slaughtered after 32 h of treatment, the mean diameter of the largest antral follicle was significantly (P less than 0.001) greater in control ewes (5.92 +/- 0.17 mm) than in animals that were also given bFF (3.94 +/- 0.14 mm). In addition, the incidence of atresia in the 3 largest antral follicles present at this time was greater in bFF-treated ewes. These results show that, when plasma FSH concentrations are suppressed by administration of bFF, although the magnitude of GnRH-induced LH episodes is unchanged, preovulatory follicular development is impaired and ovulation does not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Rates of ovulation differed significantly (P less than 0.01) among ewes of the different genetic lines. However, of the reproductive characteristics studied, only progesterone concentration at the height of luteal function, duration of oestrus, and interval from onset of oestrus to peak of the preovulatory gonadotrophin surge showed significant positive association with rate of ovulation. The pattern of secretion of LH during the periovulatory period did not differ in the Galway and Finnish Landrace breeds. The total amount of LH secreted during the preovulatory surge did not differ amongst lines. Similarly, no difference in the plasma concentration of LH at the height of the preovulatory surge was noted among Galway and reference Finnish Landrace lines. However, the concentration of LH at the height of the surge was significantly (P less than 0.05) reduced in the selected Finnish Landrace line. Plasma concentrations of FSH during the preovulatory period were significantly (P less than 0.05) elevated in the breed (Galway) with the lowest prolifcacy. When contrasted with either of the Finnish Landrace lines, the magnitudes of the preovulatory surge of FSH and the secondary surge of FSH were significantly greater (P less than 0.05) in Galway ewes. These results suggest that genetic difference in rate of ovulation among sheep breeds is not tightly coupled to quantitative differences in plasma concentration of gonadotrophic hormones during the periovulatory period.  相似文献   

7.
To examine how androgens affect endocrine events associated with increased ovulation rate, gilts were injected with androgen receptor agonists, an antagonist, or a combination of both. Blood samples were collected hourly from Day 13 to estrus (Day 0 = onset of estrus) coincident with gilts (n = 6 per treatment) receiving daily treatments of vehicle (corn oil), 10 mg of testosterone, 10 mg of 5 alpha-dihydrotestosterone (dihydrotestosterone), 1.5 g of flutamide (an androgen receptor antagonist), testosterone plus flutamide, or dihydrotestosterone plus flutamide. Treatment of gilts with testosterone or dihydrotestosterone alone increased (P < 0.05) concentrations of FSH in serum, and these effects were blocked by cotreatment with flutamide. Estradiol-17beta and androstenedione concentrations in serum were increased (P < 0.05) at 2 h after injection of testosterone or testosterone plus flutamide but not after dihydrotestosterone treatment, probably because of the role of testosterone as a substrate for estradiol-17beta and androstenedione synthesis. There were no effects of the six treatments on serum concentrations of progesterone during luteolysis, but treating gilts with testosterone shortened (P < 0.05) the proestrous period. Total embryonic loss by Day 11 in gilts treated with dihydrotestosterone was reversed when gilts were cotreated with dihydrotestosterone plus flutamide. Results of this experiment indicated that androgen actions both increased FSH secretion and reduced embryonic survival by a mechanism(s) dependent on the androgen receptor.  相似文献   

8.
An experiment was conducted to ascertain if follicles could reach ovulatory size after the largest follicle (dominant) has been removed at different times during a progestin treatment in anestrous ewes, and secondly to determine if these new follicles could respond to an hCG-induced ovulation and have similar function as corpora lutea. Mature crossbred sheep (n=44) in anestrous were treated with an intravaginal sponge containing 40 mg of FGA (day 0=sponge insertion) for 9 days. Treatments consisted of cauterization of the largest follicle on the experimental day 3 (T1), day 6 (T2) and day 9 (T3); day 12 to ascertain the size of the largest follicle in control ewes. During laparotomies, the diameters of the largest follicle (DF), and those of the second and third largest follicles (SF1 and SF2, respectively) were determined. On day 12, a second laparotomy was performed for those ewes which had their DF cauterized on days 3, 6 and 9, a fourth group was left intact and only laparotomized on day 12. At this time, the size of the new DF, SF1 and SF2 were determined. Immediately after the laparotomy on day 12, all the ewes were treated with 1000 i.u. of hCG to induce ovulation. Blood samples were collected daily from day 0 to 50 and samples were analyzed for progesterone concentrations. The size of the DF at the time of sponge removal was smaller that those observed on day 3 or 6 of sponge suggesting that follicles in ewes treated with this progestin regress and a new wave of follicular development ensues between day 6 and the time of sponge removal. The size of the DF on day 12 was also smaller in ewes that have the largest follicle removed at the time of sponge removal reflecting that these follicles had a shorter period of growth; however, the rate of growth was greater for these follicles than for follicles arising after cauterization on day 3 or 6 after sponge insertion. There were no differences among treatments, in the number of ewes that formed a corpus luteum (CL) in response to hCG. Life span of the corpora lutea did not differ among ewes having their DF removed on day 6 or 9 or those that served as controls, however, ewes that had their DF removed on day 3 developed longer lived CL in a larger proportion of animals. Average progesterone concentration during the life span of the induced corpora lutea was greater in control ewes than in any other experimental group. These observations allow us to conclude that, (a) the follicular dynamics observed in anestrous ewes treated with a progestin intravaginal sponge resembles that observed during the normal estrous cycle in the ewe; (b) the effects of progesterone on life span of the corpus luteum could not be only related to direct effects at the follicle but also involve changes in other components of the uterine-ovarian-hypothalamic axis; (c) the mechanisms controlling luteal life span seem to be different to those mechanisms controlling the function of the induced corpus luteum.  相似文献   

9.
In this study, the characteristics of ovarian follicular waves and patterns of serum concentrations of follicle-stimulating hormone (FSH), estradiol, and progesterone were compared between cycles with three (n = 9) or four (n = 10) follicular waves in Western White Face (WWF) ewes (Ovis aries). Transrectal ultrasonography and blood sampling were performed daily during one cycle. Estrous cycles were 17.11 ± 0.3 and 17.20 ± 0.2 d long in cycles with three and four waves, respectively (P > 0.05). The first interwave interval and the interval from the emergence of the final wave to the day of ovulation were longer in cycles with three waves compared with those in cycles with four waves (P < 0.05). The growth phase (5.1 ± 0.5 vs. 3.1 ± 0.4 d) and life span (5.67 ± 0.3 vs. 4.3 ± 0.3 d) of the largest follicle growing in the last or ovulatory wave was longer in cycles with three waves compared with that in cycles with four waves (P < 0.05). The maximum diameter of the largest follicle was greater in the first wave and the ovulatory wave compared with that in other waves of the cycle (P < 0.05). The regression phase of the largest follicle growing in the first wave was longer in cycles with three waves compared with that in cycles with four waves (4.44 ± 0.4 vs. 3.4 ± 0.4 d; P < 0.05). The length of the life span, regression phase, and, although not significant in every case, FSH peak concentration and amplitude decreased across the cycle (P < 0.05). We concluded that estrous cycles with three or four follicular waves were confined within the same length of cycle in WWF ewes. In this study, there were no apparent endocrine or follicular characteristics that could explain the regulation of the different number of follicular waves (three vs. four) during cycles of similar length.  相似文献   

10.
The indicator fractionation technique with [86Rb]rubidium chloride as the indicator was used to determine the relative blood flow (RBF) as a measure of capillary blood flow in the ovaries of conscious, hormonally treated, anoestrous ewes. Treatment of ewes with either progesterone only or oestradiol only had no effect on ovarian RBF, but treatment with oestradiol subsequent to progesterone caused a significant increase (P less than 0.001). Consequently, it appears that progesterone-induced sensitivity of the ovarian vasculature to the vasodilatory effects of oestradiol may be responsible for increased ovarian blood flow around oestrus in cyclic ewes.  相似文献   

11.
The mechanism governing the number of follicle-stimulating hormone (FSH) peaks and emerging follicular waves in ruminants remains unknown. The main purpose of the present study was to examine the relationships between progesterone (P(4)) levels, circulating concentrations of FSH and antral follicular development throughout the interovulatory interval in sheep. We retrospectively analyzed and compared daily serum concentrations of (P4), FSH and estradiol (E2) obtained in cyclic (November-December) Western White Face ewes (Columbia×Rambouillet) that had 3 (n=10) or 4 (n=19) follicular waves per estrous cycle. Follicular growth was monitored in all animals by daily transrectal ultrasonography. Mean P(4) concentrations were greater (p<0.05) in sheep with 4 waves per cycle compared to their counterparts with 3 waves of follicular growth. The ewes with 3 waves exceeded (p<0.05) animals with 4 follicular waves in mean serum FSH concentrations on days 0-2, 6, 7, 9-11, 14 and 15 post-ovulation. Animals with 4 follicular waves exceeded (p<0.05) the ewes with 3 waves in mean serum E(2)> concentrations on days - 1, 2 and 10 of the estrous cycle studied (day 0=ovulation). The present results are supportive of the notion that luteal P(4) is an important endocrine signal, which controls the periodicity of FSH peaks and the number of emerging follicular waves in cyclic ewes.  相似文献   

12.
Transrectal ultrasonography of ovaries was performed each day in non-prolific Western white-faced (n = 12) and prolific Finn ewes (n = 7), during one oestrous cycle in the middle portion of the breeding season (October-December), to record the number and size of all follicles > or = 3 mm in diameter. Blood samples collected once a day were analysed by radioimmunoassay for concentrations of LH, FSH and oestradiol. A cycle-detection computer program was used to identify transient increases in concentrations of FSH and oestradiol in individual ewes. Follicular and hormonal data were then analysed for associations between different stages of the lifespan of the largest follicles of follicular waves, and detected fluctuations in serum concentrations of FSH and oestradiol. A follicular wave was defined as a follicle or a group of follicles that began to grow from 3 to > or = 5 mm in diameter within a 48 h period. An average of four follicular waves per ewe emerged during the interovulatory interval in both breeds of sheep studied. The last follicular wave of the oestrous cycle contained ovulatory follicles in all ewes, and the penultimate wave contained ovulatory follicles in 10% of white-faced ewes but in 57% of Finn ewes. Transient increases in serum concentrations of FSH were detected in all animals and concentrations reached peak values on days that approximated to follicle wave emergence. Follicular wave emergence was associated with the onset of transient increases in serum concentrations of oestradiol, and the end of the growth phase of the largest follicles (> or = 5 mm in diameter) was associated with peak serum concentrations of oestradiol. Serum FSH concentrations were higher in Finn than in Western white-faced ewes during the follicular phase of the cycle (P < 0.05). There were no significant differences in serum concentrations of LH between Western white-faced and Finn ewes (P > 0.05). Mean serum concentrations of oestradiol were higher in Finn compared with Western white-faced ewes (P < 0.01). It was concluded that follicular waves (follicles growing from 3 to > or = 5 mm in diameter) occurred in both prolific and non-prolific genotypes of ewes and were closely associated with increased secretion of FSH and oestradiol. The increased ovulation rate in prolific Finn ewes appeared to be due primarily to an extended period of ovulatory follicle recruitment.  相似文献   

13.
Differences in follicular development and circulating hormone concentrations, between lactating cows and nulliparous heifers, that may relate to differences in fertility between the groups, were examined. Multiparous, cyclic, lactating Holstein cows (n=19) and cyclic heifers (n=20) were examined in the winter, during one estrous cycle. The examinations included ultrasound monitoring and daily blood sampling. Distributions of two-wave and three-wave cycles were similar in the two groups: 79 and 21% in cows, 70 and 30% in heifers, respectively. Cycle lengths were shorter by 2.6 days in heifers than in cows, and in two-wave than in three-wave cycles. The ovulatory follicle was smaller in heifers than in cows (13.0+/-0.3 mm versus 16.5+/-0.05 mm). The greater numbers of large follicles in cows than in heifers corresponded well to the higher concentrations of FSH in cows. The duration of dominance of the ovulatory follicle tended to be longer in cows than in heifers. Estradiol concentrations around estrus and the preovulatory LH surge were higher in heifers than in cows (20 versus 9 ng/ml). Progesterone concentrations were higher in heifers than in cows from Day 3 to Day 16 of the cycle. Circulating progesterone did not differ between two-wave and three-wave cycles. The results revealed differences in ovarian follicular dynamics, and in plasma concentrations of steroids and gonadotropins; these may account for the differences in fertility between nulliparous heifers and multiparous lactating cows.  相似文献   

14.
In Exp. 1, 7 Finn-Merino ewes which had one ovary autotransplanted to a site in the neck had jugular and timed ovarian venous blood samples collected at 10-min intervals for 2 h before and 3 h after injection of 5 micrograms NIAMDD-oFSH-S16. In Exp. 2, 8 Finn-Merino ewes with ovarian autotransplants had jugular and timed ovarian venous blood samples collected at 15-min intervals for 2 h before and 12 h after bolus injection of 40 micrograms NIAMDD-oFSH-S16 and infusion of oFSH-S16 at 6 micrograms/min for 4 h. In Exp. 2 the follicular population of the ovary was assessed by real-time ultrasound at the beginning and end of the experimental period. In both experiments the secretion rates of inhibin (1-3 ng/min) and oestradiol (0.5-8 ng/min) were similar to those observed during the luteal phase of the cycle in the breeding season, indicating significant follicular development in these animals. In Exp. 1 there was no change in the secretion of oestradiol or inhibin after the injection of FSH which resulted in a 25% increase (P less than 0.05) in the concentration of FSH in plasma. Inhibin secretion was pulsatile but there was no difference in inhibin pulse frequency before (1.6 +/- 0.2 pulses/h) or after (1.2 +/- 0.5 pulses/h) injection of FSH. In Exp. 2 injection of FSH resulted in an increase (P less than 0.001) in plasma concentrations of FSH in the sample taken 10 min after injection from a baseline of 1.2 +/- 0.2 ng/ml to a peak of 10.6 +/- 1.0 ng/ml (mean +/- s.e.m.).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Southdown ewes in mid-seasonal anoestrus were exposed to rams for 0 h (control group), 2 h, 24 h, 40 h, 3 days, 10 days or 20 days. Serial blood samples were then taken to determine LH and FSH levels. Ewes with greater than 24 h ram exposure were ovariectomized immediately after bleeding, and all follicles greater than 1 mm diameter were dissected from the ovaries and measured. LH basal concentrations and pulse frequency increased significantly within 2 h of ram introduction, but by 24 h fell, and then remained low. FSH concentrations fell within 2 h of ram introduction and remained low. Control group ewes (isolated) had no follicles greater than 4 mm diameter, whereas all ewes exposed to rams had large follicles, with CL or preovulatory follicles present at 40 h after ram introduction. Ram introduction was also associated with follicle recruitment (antrum formation to less than 2 mm). Follicular recruitment and development to the large follicle stage therefore occurred during a period of low plasma gonadotrophin levels and suppressed LH pulsing.  相似文献   

16.
Adult anoestrous ewes (N = 30) were given intravaginal Silastic implants containing melatonin or empty implants (N = 7) during mid-anoestrus (4 July). Implants were removed 16 days later (Group 1), 36 days later (Group 2) or 93 days later (Group 3). Blood samples were taken twice weekly for progesterone assay to monitor onset of ovarian activity. The percentage of ewes in each group showing early onset of ovarian cyclicity was significantly correlated with length of exposure to melatonin.  相似文献   

17.
To study the influence of the F gene on follicular dynamics and dominance, 2-year-old Booroola x Finnish Landrace (BFL, N = 17) and Booroola x Suffolk (BS, N = 18) ewes were compared with contemporary purebred Finn (FL, N = 18) and Suffolk (S, N = 18) ewes. In Exp. 1, oestrous cycles of ewes were synchronized during the breeding season with progestagen-impregnated sponges. At sponge removal (Day 0), 14 days after insertion, ewes of each of the 4 genetic groups were assigned to Group 1 in which all follicles visible on both ovaries were destroyed by electrocauterization except for the largest (F1) which was marked, Group 2 in which all visible follicles on both ovaries were destroyed, or Group 3 in which the 3 largest follicles of both ovaries were identified as F1, F2 and F3 and marked. At 48 h after treatment (Day 2), follicular growth was evaluated. At Day 0, the mean number of small follicles (1-3 mm) was higher (P less than 0.05) for BS, S and BFL (35.8, 35.1 and 32.9) than FL (24.9) ewes. Large follicles (greater than or equal to 4 mm) were more numerous (P less than 0.05) in FL (3.5) than in BS (2.1) ewes, BFL and S ewes being intermediate. Diameter of the F1 follicle was larger (P less than 0.05) for S (7.6 mm) than FL, BS and BFL (5.8, 5.1 and 5.1 mm) ewes. In Group 1, all F1 follicles marked at Day 0 ovulated at oestrus after sponge removal for BFL, BS and S ewes while in FL ewes, 2 of 6 F1 follicles regressed. In ewes ovulating, only the F1 follicle ovulated except for one S ewe which shed one more ovum. In Group 2, there were no follicles greater than or equal to 4 mm at Day 2 and no ewes ovulated after treatment. In Group 3, the proportion of marked follicles that ovulated was higher for S ewes than in those of the prolific genotypes. The number of follicles not marked at Day 0 but ovulating (compared to the total number of ovulations) was higher in BFL, BS and FL (8/11, 9/13 and 9/13) than S (3/10) ewes. In Exp. 2, prolific (BFL + BS) and non-prolific (S) ewes were compared following destruction of follicles greater than or equal to 3 mm with the F1 left intact (Treatment 1) or destroyed (Treatment 2), 12 days after sponge insertion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The objectives were to evaluate the effects of exercise on ovarian folliculogenesis and related hormones in mares. Mares (n = 11) were randomly assigned into a control (non-exercised) or treatment (exercised) group. Treatment mares (n = 5) were moderately exercised for 30 min, 6 d/wk. All mares underwent daily transrectal ultrasonographic examinations and ovarian follicles > 6 mm were measured. Blood samples were collected during the first (Cycle 1) and last (Cycle 4) cycle, and serum concentrations of cortisol, LH, and FSH were determined. Mean cortisol concentrations were elevated (P < 0.05) in exercised mares, 6.29 ± 0.22 compared with 5.62 ± 0.16 ng/dL (mean ± SEM), 30 min post exercise. There were no significant differences between groups in mean FSH concentrations; however, exercised mares had lower (17.3 ± 6.4 vs 41.1 ± 5.5 ng/mL; P < 0.05) peak LH concentrations. Furthermore, exercised mares experienced a longer (24.7 ± 0.8 vs 22.2 ± 0.8 d; P < 0.05) mean interovulatory interval for all cycles combined, fewer (P < 0.05) follicles 6 to 20 mm in diameter, and an increased (P < 0.05) number of follicles >20 mm following deviation. The dominant and largest subordinate follicle in exercised mares had a greater (P < 0.05) mean diameter on the day of deviation, suggesting delayed deviation. Exercised mares also tended (P = 0.06) to have an increased number of cycles with at least two dominant follicles compared to control (62 vs 36%, respectively), indicating a decreased ability of the largest follicle to assert dominance. Under the conditions of this study, moderately exercising mares induced higher cortisol concentrations, lowered peak LH concentrations, and altered ovarian follicular dynamics.  相似文献   

19.
The microsphere technique was used to obtain estimates of ovarian capillary blood flow near ovulation, in 8 seasonally anoestrous ewes, which were induced to ovulate by GnRH therapy. Plasma progesterone concentrations were monitored in jugular blood sampled between Days 4 and 7 after the onset of the preovulatory LH surge. The ewes were then slaughtered. Three of the ewes were treated with a single injection of 20 mg progesterone before GnRH therapy. In these ewes and 1 other, plasma progesterone values increased after ovulation and reached 1.0 ng/ml on Day 7 following the preovulatory LH surge (normal, functional CL), whilst in the other 4 ewes progesterone concentrations increased initially then declined to 0.5 ng/ml by Day 7 (abnormal CL). In the ewes exhibiting normal luteal function, the mean ovarian capillary blood flow was significantly greater (P less than 0.01) than that for ewes having abnormal luteal function. Irrespective of the type of CL produced, capillary blood flow was significantly greater (P less than 0.05) in ovulatory ovaries than in non-ovulatory ovaries. These findings indicate that the rate of capillary blood flow in ovaries near ovulation may be a critical factor in normal development and maturation of preovulatory follicles and function of subsequently formed CL.  相似文献   

20.
The patterns of LH and FSH secretion were measured in 4 experimental groups of Finnish Landrace and Scottish Blackface ewes: long-term (18 months) ovariectomized ewes (Group 1), long-term ovariectomized ewes with an oestradiol implant, which has been shown to produce peripheral levels of approximately 5 pg/ml (Group 2), long-term ovariectomized ewes with an oestradiol implant for 18 months which was subsequently removed (surgery on Day 0) (Group 3) and short-term ovariectomized ewes (surgery on Day 0) (Group 4). LH and FSH concentrations were monitored in all groups at approximately weekly intervals, before and after Day 0. Finnish Landrace ewes in Groups 1, 2 and 3 had significantly higher mean FSH concentrations than did Scottish Blackface ewes (P less than 0.01). FSH and LH concentrations increased significantly in Groups 3 and 4, but values in Group 4 were significantly lower (P less than 0.01) than those in Group 1 ewes even up to 30 days after ovariectomy. In Group 3, LH concentrations increased to levels similar to those in Group 1. The pattern of LH release was, however, significantly different, with a lower LH pulse frequency (P less than 0.05), but higher pulse amplitude (P less than 0.05). This difference was maintained at least until 28 days after implant removal. We suggest that removal of negative feedback by ovariectomy demonstrates an underlying breed difference in the pattern of FSH secretion and that ovarian factors other than oestradiol are also involved in the negative-feedback control of hypothalamic/pituitary gland function. Furthermore, negative-feedback effects can be maintained for long periods, at least 28 days, after ovariectomy or oestradiol implant removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号