首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ability of sarcoplasmic reticulum vesicles to retain calcium following ATP-supported calcium uptake in the presence of the calcium-precipitating anions oxalate and phosphate depends on Cao (calcium ion concentration outside the vesicles) and Cai (calcium ion concentration within the vesicles). Calcium efflux rates at any level of Cai are accelerated when Cao is increased. Higher Cao at the time that calcium uptake reactions reach steady state is associated with a spontaneous calcium release that reflects this effect of increased Cao. Increasing Cai at any level of Cao causes little or no acceleration of calcium efflux rate so that calcium permeability coefficients, estimated by dividing calcium efflux rates by Cai, the "driving force", are inversely proportional to Cai. Calcium permability coefficients thus correlate, as a first approximation, with the ratio Cai/Cao, decreasing 1000-fold as this ratio increases over a 3000-fold range (Cao = 0.1 to 3.3 muM, Cai =4 to 750 muM). Oscillations in both the calcium content of the vesicles and Cao are seen as calcium uptake reactions approach steady state, suggesting that calcium permeability undergoes time-dependent variations. Sudden reduction of Cao to levels that markedly inhibit calcium influx via the calcium pump unmasks a calcium efflux that decreases slowly over 60 to 90 s.The maximal calcium permeability observed in the present study would allow the calcium efflux rate from the sarcoplasmic reticulum at a Cai of 100 muM to be approximately 10(-10) mol/cm2/s, which is about 1 order of magnitude less than that estimated for the sarcoplasmic reticulum of activated skeletal muscle in vivo. The release of most of the stored calcium in some experiments indicates that the observed permeability changes can occur over a large portion of the surface of the sarcoplasmic reticulum.  相似文献   

2.
A burst of proton ejection was observed during the initial steps of Ca2+ uptake by sarcoplasmic reticulum vesicles. The initial rate of this proton ejection is considerably higher than the initial rate of Ca2+ uptake, and is independent of the amount of accumulated Ca2+. The ejection of protons is a transmembrane event, since it is dissipated by the ionophore X-537A, and does not occur when the ionophore is added before the initiation of the transport of Ca2+. The low proton permeability of the membranes is largely increased by X-537A. The studies of facilitated diffusion of protons in the presence of the ionophore permitted the estimation of the pH within the vesicles. A fast alkalinization occurs within the vesicles during the initial steps of Ca2+ uptake, as revealed by sequestered bromothymol blue. The change in absorbance of this dye corresponds to a change of 0.15 pH unit within the vesicles, and a maximal transmembrane ΔpH of about 0.5 may build up. Since such a gradient may not account energetically for the transmembrane gradients of Ca2+, I suggest that a transmembrane electrical potential may develop as a consequence of proton ejection.  相似文献   

3.
The ionophore A23187 is a potent inhibitor of oxalate supported calcium uptake if added before uptake is initiated by ATP and is a much weaker inhibitor of uptake once uptake has been initiated. This observation is shown to be due to a failure of oxalate to capture the transported calcium at the beginning of uptake because the rate of calcium oxalate crystallization is initially slow, thereby allowing the ionophore to release the accumulated calcium. This hypothesis is supported by the observation that calcium oxalate crystallization shows a lag phase which is absent when calcium oxalate seeds are in the reaction system. Once calcium uptake has progressed, calcium oxalate seeds are present in the sarcoplasmic reticulum and calcium oxalate crystallization proceeds sufficiently rapidly that the ionophore cannot compete successfully for calcium. That A23187 and oxalate compete for intravesicular ionic calcium is shown by the stimulation which each produces in ATPase activity and by the dependence of ionophore activity on oxalate concentration.The failure of calcium oxalate crystallization to reach equilibrium during the early phase of calcium uptake caused us to examine whether at any time during calcium uptake, crystallization reaches equilibrium. Skeletal sarcoplasmic reticulum accumulated calcium at such a high rate that oxalate, in concentrations up to 20mM, was unable to clamp intravesicular calcium at equilibrium values. The lower rate of calcium accumulation by cardiac sarcoplasmic reticulum and/or perhaps its greater permeability to oxalate apparently allows intravesicular calcium to be clamped by oxalate.  相似文献   

4.
The ionophore X537A causes a large increase in the [(14)C]dopamine (a catecholamine) permeability of planar bilayer membranes. Dopamine transport increases linearly with the ionophore concentration. At relatively high concentrations in the presence of dopamine, the ionophore omdices a conductance which is nearly ideally selective for the dopamine cation. However, the total dopamine flux as determined in tracer experiments is not affected by an electric field and is over 10(5) times larger than predicted from the estimated dopamine conductance. Increasing the dopamine concentration on the side containing radioactive dopamine (the cis side) saturates the dopamine transport. This saturation is relieved by trans addition of nonradioactive dopamine, tyramine, H(+), or K(+). With unequal concentrations of dopamine cis and trans (49 and 12.5 mM), the unidirectional dopamine fluxes are equal. Increasing H(+) cis and trans decreases dopamine transport. It is concluded that at physiological pH, the X537A-induced transport of dopamine occurs via an electrically silent exchange diffusion of dopamine cation with another cation (e.g., dopamine(+), H(+), or K(+)). X537A induces a Ca(++)-independent release of catecholamines from sympathetic nerves by interfering with intracellular storage within storage vesicles (R.W. Holz. 1975. Biochim. Biophys. Acta. 375:138-152). It is suggested that X537A causes an exchange of intravesicular catecholamine with a cytoplasmic cation (perhaps K(+) or H(+)) across the storage vesicle membrane.  相似文献   

5.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered. Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates. Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux wre inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore. After cleavage of the 100,000 dalton ATPase to 50,000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

6.
X537A carries dopamine across lipid bimolecular membranes. The rate of transport increases linearly with the X537A concentration and is independent of an electric field across the membrane. The evidence suggests that the permeating species is a neutral 1:1 complex between dopamine and X537A. A23187 does not transport dopamine. The permeability of the membrane to calcium increases as the square of the X537A concentration; the transport of calcium is also increased by A23187. With both ionophores, calcium is probably transported as an uncharged complex. Neither desmethylimipramine nor cocaine alters the transport of dopamine with X537A.  相似文献   

7.
Extracellular calcium (Cao) and the steroid hormone 1,25(OH)2D, induce the differentiation of human epidermal cells in culture. Recent studies suggest that increases in intracellular free calcium (Cai) levels may be an initial signal that triggers keratinocyte differentiation. In the present study, we evaluated cornified envelope formation, the terminal event during keratinocyte differentiation, and correlated it with changes in the Cai levels during differentiation of keratinocytes in culture induced by Cao or 1,25(OH)2D. Keratinocytes were grown in different Cao concentrations (0.1 or 1.2 mM) or in the presence of 1,25(OH)2D (10(-11) to 10(-7) M), and the Cai levels were measured using the fluorescent probe Indo-1. Our results suggest that the induction of cornified envelope formation is associated with an increase in Cai level during calcium-induced differentiation. Cao and the calcium ionophore ionomycin acutely increased Cai and cornified envelope formation. In contrast, the effect of 1,25(OH)2D on increasing Cai levels and stimulating cornified envelope formation was long-term, requiring days of treatment with 1,25(OH)2D. Our data are consistent with other recent studies and support the hypothesis that Cao regulates keratinocyte differentiation primarily by acutely increasing their Cai levels. The role of calcium in the mechanism of action of 1,25(OH)2D on keratinocyte differentiation is less clear. The increase in Cai of keratinocytes during 1,25(OH)2D induced differentiation may be essential for or subsequent to its prodifferentiation effects.  相似文献   

8.
The antibiotics X 537A and A 23187 are negatively charged divalent cation ionophores. X 537A may, in addition, be an ionophore for amines including catecholamines. The effects of these ionophores were examined on the uptake and release of dopamine by synaptosomes prepared from rat corpus striatum. Both X 537A and A 23187, at concentrations less than 0.5 μM, release both endogenous and [3H]-dopamine from synaptosomes. They had virtually no effect on the uptake of exogenous dopamine. These compounds act by different mechanisms. X 537A causes divalent ion-independent release in which a large fraction of the effluent consists of deaminated products. X 537A, in addition, releases [3H]dopamine from rat adrenal medullary chromaffin granules. The results suggest that X 537A causes release of dopamine from intrasynaptosomal storage vesicles and perhaps is acting as a catecholamine carrier across the vesicular membrane. A 23187, on the other hand, causes a Ca2+-dependent release in which only a small fraction of the catechol in the effluent is deaminated. A 23187 has little effect on the release of [3H]dopamine from chromaffin granules. These results suggest that A 23187 carries Ca2+ into the synaptosomes and thereby initiates exocytotic release.  相似文献   

9.
Unfractionated and low buoyant density sarcoplasmic reticulum vesicles released calcium spontaneously after ATP- or acetyl phosphate-supported calcium uptake when internal Ca2+ was stabilized by the use of 50 mM phosphate as calcium-precipitating anion. This spontaneous calcium release could not be attributed to falling Ca2+ concentration outside the vesicles (Ca02+), substrate depletion, ADP accumulation, nonspecific membrane deterioration or the attainment of a high vesicular calcium content. Instead, spontaneous calcium release was directly proportional to Ca02+ at the time that calcium content was maximal. A causal relationship between high Ca02+ and spontaneous calcium release was suggested by the finding that elevation of Ca02+ from less than 1 μM to 3–5 μM increased the rate and extent of calcium release.The spontaneous calcium release was due both to acceleration of calcium efflux and slowing of calcium influx that was not accompanied by a significant change in the rate of ATP hydrolysis. Neither reversal of the transmembrane KCl gradient nor incubation with cation and proton ionophores abolished the spontaneous calcium release. The persistence of calcium release under conditions where the membrane was permeable to both anions and cations makes it unlikely that this phenomenon is due to a changing transmembrane potential.  相似文献   

10.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered.Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates.Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux were inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore.After cleavage of the 100 000 dalton ATPase to 50 000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

11.
The possible role of calcium in the uptake of transferrin and iron by rabbit reticulocytes was investigated by altering cellular calcium levels through the use of the chelating agents EDTA and ethyleneglycol-bis-(3-aminoethylether)-N,N′-tetraacetic acid (EGTA) and the ionophores, A23187 and X537A. Incubation of reticuloyctes with EDTA or EGTA at 4°C had no effect on transferrin and iron uptake but incubation at 37°C resulted in an irreversible inhibition associated with decreased adsorption of transferrin to the cells and evidence of inactivation or loss of the transferrin receptors. Transferrin and iron uptake were also inhibited when the cells were incubated with A23187 or X537A. In the case of A23187 the action was primarily exerted on the temperature-sensitive stage of transferrin uptake and was associated with loss of cellular K+ and decrease in cell size. The effect was greater when Ca2+ was added to the incubation medium than its absence. X537A produced relatively greater inhibition of iron uptake than of transferrin uptake, associated with a reduction in cellular ATP concentratio. The action of X537A was unaffected by the presence of Ca2+ in the incubation medium.The results obtained with EDTA and EGTA indicate that cell membrane Ca2+ is required for the integrity or binding of transferrin receptors to the reticulocyte membrane. No evidence was obtained from the experiments with ionophores that an increase of cellular Ca2+ affects transferrin and iron uptake directly. The inhibition caused by A23187 was mainly due to a reduction in cell size resulting from increased membrane permeability to K+ and that caused by X537A appeared to result from an inhibition of energy metabolism and ATP production.  相似文献   

12.
Membrane vesicles, isolated from osmotic lysates of Azotobacter vinelandii spheroplasts in Tris-acetate buffer, rapidly accumulate calcium in the presence of an oxidizable substrate. The addition of D-lactate to vesicles increases the rate of calcium uptake by 34-fold; L-malate, NADH, NADPH, and reduced phenazine methosulfate are nearly as effective as lactate. The intravesicular calcium pool which accumulates under these conditions is rapidly discharged by isotopic exchange or in the presence of respiratory inhibitors, uncouplers, or EGTA. The uptake rates for calcium follow Michaelis-Menten kinetics yielding a Km of 48 microM and a V max of 45 nmoles/min/mg membrane protein. Initial rates of EGTA-induced calcium efflux also follow saturation kinetics, giving a V max identical to that for calcium entry; but the Km for exodus is 14 mM, assuming that free calcium accumulates in vesicles. The difference in the affinity of calcium for the entry and exit processes observed during respiration is sufficient to account for the estimated 150-fold calcium concentration gradient achieved under steady-state conditions. The uptake system is specific for calcium as opposed to other cations, but zinc and lanthanum are effective competitors. Calcium uptake is blocked when electron is inhibited by exposure of vesicles to p-chlormercuriphenylsulfonate, hydroxyquinoline-N-oxide, or cyanide, or under anoxic conditions. Divalent cation ionophores (A23187 and X537A) and proton ionophores (CCP and gramicidin D) also block calcium transport effectively. The electrogenic potassium ionophore valinomycin has no effect on lactate-dependent calcium uptake in the presence of potassium; but ionophores which induce electroneutral exchange of protons for sodium or potassium (monensin and nigericin, respectively) did block calcium transport in the presence of the appropriate cation. The fluorescence intensity of quinacrine (an amine probe) in the presence of A. vinelandii membrane vesicles is reduced by 25% on addition of lactate; the quenching is blocked by CCP. This indicates that a pH gradient (inside acid) is developed across the vesicle membrane during lactate oxidation. These results indicate that these membrane preparations contain vesicles of inverted topology (with respect to the intact cell) and suggest that calcium transport occurs by means of electroneutral calcium/proton antiport.  相似文献   

13.
The events involved in platelet shape change, aggregation, the release reaction and contraction are thought to be mediated by the availability of Ca2+. Increased cytoplasmic calcium, released from intracellular stores, triggers platelet activity, and increased concentration of adenosine 3',5'-cyclic monophosphate (cyclic AMP) inhibits platelet alterations. We have studied the hypothesis that cyclic AMP may regulate the level of platelet cytoplasmic calcium by stimulating calcium removal by a membrane system. Such a hypothesis would be consistent with the reversibility of most manifestations of platelet activation. Human platelets were sonicated and unlysed platelets, mitochondria and granules were removed by centrifugation at 19 000 X g. Electron microscopy shows that the sediment, after centrifugation of the supernatant at 40 000 X g consists to a large extent of membrane vesicles. Such preparations actively concentrate calcium, as measured by the uptake of 45Ca, and also have the maximal calcium-stimulated ATPase activity. Optimal calcium uptake requires ATP and oxalate, and release of calcium from loaded vesicles was stimulated by the calcium ionophore A23187 and inhibited by LaCl3. These data indicate that calcium was being actively concentrated within membrane vesicles. After washing of such preparations in the absence of ATP, their capacity to take up Ca2+ is reduced to an initial value of 2.8 nmol/mg protein per min. In the presence of 2 - 10(6) M cyclic AMP to which was added a protein kinase preparation from human platelets, up to a 3-fold increase of this rate of uptake was observed. These results suggest that in platelets, as in muscle, cyclic AMP is a regulatory factor in the control of cytoplasmic calcium. Although the cyclic nucleotide may have still other functions, it appears likely that the well-known inhibition of many platelet activities by high intracellular cyclic AMP concentrations is directly linked to the stimulation of the removal of Ca2+ from the cytoplasm.  相似文献   

14.
The endoplasmic reticulum from isolated rat adipocytes has the ability to actively accumulate calcium. The calcium uptake was characterized using the 20,000 X g supernatant (S1 fraction) of total cellular homogenate. Endoplasmic reticulum vesicles isolated from the S1 fraction as a 160,000 X g microsomal pellet prior to testing demonstrated little ability to accumulate calcium. The calcium uptake in the S1 fraction was localized to the endoplasmic reticulum vesicles by morphologic appearance, by the use of selective inhibitors of calcium uptake, and by high speed sedimentation of the accumulated calcium. The uptake was MgATP- and temperature-dependent and was sustained by the oxalate used as the intravesicular trapping agent. Uptake was linear with time for at least 30 min at all calcium concentrations tested (3 to 100 muM) and exhibited a pH optimum of approximately 7.0. The sulfhydryl inhibitor p-chloromercuribenzene sulfonate produced a dose-dependent inhibition of calcium uptake with total inhibition at 0.07 mumol/mg protein. Ruthenium red and sodium azide inhibited less than 5% of the uptake at concentrations (5 muM and 10 mM, respectively) which completely blocked calcium uptake by mitochondria isolated from the same cells. The Km for calcium uptake was 10 muM total calcium which corresponded to approximately 3.6 muM ionized calcium in the assay system. The maximum velocity of the uptake was 5.0 nmol (mg of microsomal protein)-1 (min)-1 at 24 degrees under the assay conditions used and exhibited a Q10 of 1.8. The uptake activity of the endoplasmic reticulum vesicles in the S1 fraction exhibited a marked time- and temperature-dependent lability which might account in part for the lack of uptake in the isolated microsomal fraction. This energy-dependent calcium uptake system would appear to be of physiologic importance to the regulation of intracellular calcium.  相似文献   

15.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

16.
The phenothiazine, trifluoperazine, and the mitogenic lectins, phytohemagglutinin (PHA) and Concanavalin A (Con A), were tested for their effects on human lymphocyte plasma membrane Ca-activated Mg-ATPase and ATP-dependent calcium uptake. Trifluoperazine completely inhibited Ca-uptake when present from the start of the assay at concentrations of 100 microM or more. When added during measurement of calcium uptake, trifluoperazine reduced the rate of vesicular calcium accumulation but was unlike the calcium ionophore, A23187, which caused a rapid release of accumulated calcium from the vesicles. Trifluoperazine also inhibited membrane vesicle Ca-ATPase activity, but this inhibition was non-specific since the Mg-ATPase and Na,K-ATPase activities were inhibited to similar extents at the same concentration of the phenothiazine. In contrast, concentrations of PHA and Con A, which are mitogenic for lymphocytes, did not cause any change in Ca-uptake when added to suspensions of membrane vesicles. Con A had no effect and PHA had a weak inhibitory effect on Ca-ATPase activity.  相似文献   

17.
Bile salt-induced calcium fluxes in artificial phospholipid vesicles   总被引:1,自引:0,他引:1  
The ionic permeability of selected biological membranes is increased by bile salts. To examine changes in calcium permeability during the exposure of artificial membranes to bile salts, we investigated calcium uptake by unilamellar and multilamellar phospholipid vesicles. In the presence of 750 microM taurodeoxycholate, uptake of radiolabelled calcium by unilamellar vesicles increased 2.5-fold over control values. Calcium uptake by multilamellar vesicles as measured with a free calcium indicator, arsenazo III, increased 2.2- or 21-fold in the presence of 60 microM lithocholate or 3 beta-hydroxy-5-cholenoate, respectively. Results were directly influenced by experimental variables such as bile salt hydrophobicity, external calcium concentration, and the bile salt/lipid molar ratio. Observed membrane solubilization was minimal despite increased calcium permeability. Comparison of radiolabelled calcium uptake with radiolabelled sodium or radiolabelled rubidium uptake indicated that bile salt-dependent calcium uptake was 60-140-times greater than bile salt-dependent uptake of either monovalent cation. In an effort to delineate forces affecting calcium translocation, vesicles were exposed either to valinomycin, which induced an electrochemical gradient across the membrane, or to nigericin, which induced a proton gradient. Exposure to valinomycin minimally influenced bile salt-induced calcium uptake while exposure to nigericin significantly promoted uptake by 40-70%. The results suggest that bile salts promote calcium uptake by a mechanism which may be similar to those of other carboxylic ionophores.  相似文献   

18.
The calcium efflux from multi-layered vesicles (liposomes) of different lipid composition has been studied. Liposomes composed of lipids extracted from cattle retinas are compared with liposomes which consist of phosphatidylcholine or a 1 : 1 phosphatidylcholine/phosphatidylserine mixture. The percentages of 45Ca capture by these three types of liposomes are 10, 1 and 4% respectively.The efflux rates are 2.5 · 10?6, 2 · 10?6 and 4 · 10?5 s?1 respectively. The semilogarithmic efflux curves for phosphatidylcholine and phosphatidylcholine/phosphatidylserine liposomes are linear with time, but those for the retinal lipid liposomes are discontinuous. The activation energy for the calcium efflux from the latter liposomes is about 10.5 kcal/mol, both before and after the discontinuity.The ionophores X537A and A23187 enhance the calcium leakage from retinal lipid liposomes, the latter ionophore being much more effective than the former. At high concentrations both ionophores seem to transport calcium as a 1 : 2Ca · ionophore complex. At low ionophore concentrations, however, X537A appears to transport calcium as a 1 : 1 complex, but A23187 as a 2 : 1 complex.  相似文献   

19.
The effects of the ionophores A-23187 and X-537 A on glucose metabolism, ATP content and sucrose permeability in pancreatic islets microdissected from obese-hyperglycemic mice were studied. The formation of 14CO2 from 10 mM D-[U-14C] GLUCOSE WAS INHIBITED BY OMISSION OF Ca2+ from the medium. A-23187 (10 muM) induced a further decrease of 14CO2 formation whereas X-537 A (10 muM) had no effect. At 20 mM glucose both A-23187 (48 muM) and X-537 A (43 muM) decreased the 14CO2 formation in the absence of Ca2+ whereas only X-537 A inhibited in the presence of Ca2+. X-537 A (43 muM) also decreased the formation of 3H2O from 20 mM D-[5-3H] glucose. The islet content of ATP was not changed after incubation in media deficient in either Mg2+ or Ca2+. However, omission of both Mg2+ and Ca2+ resulted in about 50% decrease of the ATP content. A-23187 and X-537 A induced dose-dependent decreases of the islet ATP content. X-537 A was much more potent than A-23187. Both ionophores induced stronger depression of the ATP content when Ca2+ was omitted. X-537 A (43 muM) but not A-23187 (48 muM) increased the beta-cell membrane permeability as indicated by an increased sucrose space in relation to the urea space of islets. Such an effect was not obtained with X-537 A at 1 muM or by omission of Ca2+. It is suggested that the marked metabolic effects of the ionophores reflect an impaired mitochondrial metabolism. These metabolic changes should be considered in interpretations of ionophore action on insulin secretion.  相似文献   

20.
Beta-Cell-rich pancreatic islets were microdissected from noninbred ob/obmice and exposed to the calcium ionophores X-537A and A-23187. X-537A differed from A-23187 in being a potent insulin secretagogue at non-stimulating glucose concentrations. Both ionophores inhibited the stimulation of insulin release obtained after adding 20 mM glucose to the incubation medium. The latter observation is consistent with the idea of a reduced beta-cell function when the Ca-2+ in the functionally important intracellular pool (s) exceeds a certain concentration. The ionophore inhibition of the glucose-stimulated insulin release may at least in part result from decreased formation of cyclic AMP, since X-537A proved to be as effective as L-epinephrine in reducing the islet content of this nucleotide in the presence of a phosphodiesterase inhibitor. The secretagogic action of X-537A at a low glucose concentration persisted when different ions were omitted from the incubation medium and was actually considerably enhanced in the absence of extracellular Ca-2+. The insulin-releasing action of X-537A was neither influenced by 3-O-methyglucose nor by drugs blocking the alpha or beta-adrenergic receptor sites. Exposure of the pancreatic beta-cells to metabolic inhibitors in concentrations which significantly reduced the secretory response to glucose, potentiated stimulation of insulin release by X-537A, suggesting that this effect may in part be accounted for by intracellular dissolution of secretory granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号