首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S M Halling  N Kleckner 《Cell》1982,28(1):155-163
Transposon Tn10 inserts at many sites in the bacterial chromosome, but preferentially inserts at particular hotspots. We believe we have identified the target DNA signal responsible for this specificity. We have determined the DNA sequences of 11 Tn10 insertion sites and identified a particular 6 base pair (bp) symmetrical consensus sequence (GCTNAGC) common to those sites. The sequences at some sites differ from the consensus sequence but only in limited and well defined ways. The sequences at some sites differ from the consensus sequence than do sequences at other sites, and the consensus sequence and closely related sequences are generally absent from potential target regions where Tn10 is known not to insert. Other aspects of the target DNA can significantly influence the efficiency with which a particular target site sequence is used. The 6 bp consensus sequence is symmetrically located within the 9 bp target DNA sequence that is cleaved and duplicated during Tn10 insertion. This juxtaposition of recognition and cleavage sites plus the symmetry of the perfect consensus sequence suggest that the target DNA may be both recognized and cleaved by the symmetrically disposed subunits of a single protein, as suggested for type II restriction endonucleases. There is plausible homology between the consensus sequence and the very ends of Tn10, compatible with recognition of transposon ends and target DNA by the same protein. The sequences of actual insertion sites deviate from the perfect consensus sequence in a way which suggests that the 6 bp specificity determinant may be recognized through protein-DNA contacts along the major groove of the DNA double helix.  相似文献   

2.
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) has been implicated in telomere protection and telomerase activation. Recent evidence has further demonstrated that hnRNP-A1 plays a crucial role in maintaining newly replicated telomeric 3′ overhangs and facilitating the switch from replication protein A (RPA) to protection of telomeres 1 (POT1). The role of hnRNP-A1 in telomere protection also involves DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the detailed regulation mechanism has not been clear. Here we report that hnRNP-A1 is phosphorylated by DNA-PKcs during the G2 and M phases and that DNA-PK-dependent hnRNP-A1 phosphorylation promotes the RPA-to-POT1 switch on telomeric single-stranded 3′ overhangs. Consequently, in cells lacking hnRNP-A1 or DNA-PKcs-dependent hnRNP-A1 phosphorylation, impairment of the RPA-to-POT1 switch results in DNA damage response at telomeres during mitosis as well as induction of fragile telomeres. Taken together, our results indicate that DNA-PKcs-dependent hnRNP-A1 phosphorylation is critical for capping of the newly replicated telomeres and prevention of telomeric aberrations.  相似文献   

3.
4.
Telomeric repeat-containing RNA is a non-coding RNA molecule newly found in mammalian cells. The telomere RNA has been found to localize to the telomere DNA, but how the newly discovered RNA molecule interacts with telomere DNA is less known. In this study, using the click chemistry we successfully found that a 6-mer human telomere RNA and 16-mer human telomere DNA sequence can form a DNA–RNA hybrid type G-quadruplex structure. Detection of the click-reaction products directly probes DNA–RNA G-quadruplex structures in a complicated solution, whereas traditional methods such as NMR and crystallography may not be suitable. Importantly, we found that formation of DNA–RNA G-quadruplex induced an exonuclease resistance for telomere DNA, indicating that such structures might be important for protecting telomeric DNA from enzyme digestion to avoid telomere DNA shortening. These results provide the direct evidence for formation of DNA–RNA hybrid G-quadruplex structure by human telomere DNA and RNA sequence, suggesting DNA–RNA hybrid G-quadruplex structure associated between telomere DNA and RNA may respond to chromosome end protection and/or present a valuable target for drug design.  相似文献   

5.
In eukaryotes, genetic exchange between homologs is facilitated by a tripartite proteinaceous structure called the synaptonemal complex (SC). Several lines of evidence indicate that the genes that encode components of SC are essential for meiotic chromosome pairing and recombination. However, the molecular mechanism by which SC proteins promote these processes is obscure. Here, we report that Saccharomyces cerevisiae Hop1 protein, a component of SC, promotes pairing between two double-stranded DNA helices containing a centrally located G/C isochore. Significantly, pairing was rapid and robust, and required four contiguous G/C base pairs. Using a series of truncated DNA double helices we show that 20 bp on either side of 8 bp target G/C sequence is essential for pairing. To our knowledge, Hop1 is the first protein shown to do so from yeast or any other organism. These results indicate that Hop1 protein is likely to play a direct role in meiotic chromosome pairing and recombination.  相似文献   

6.
7.
C. C. Lin  R. Sasi  Y. S. Fan  D. Court 《Chromosoma》1993,102(5):333-339
EcoRI subclones, designated as 50E1 and 50E4, were independently obtained from a cosmid clone previously mapped to the centromeric region of human chromosome 8. Southern blot hybridization analyses suggested that both subclones contain repetitive DNA sequences different from the chromosome 8 specific alphoid DNA. DNA sequence analysis of the 704 bp insert of 50E1 and the 1, 962 bp insert of 50E4 revealed that both inserts contained tandemly repeated units of 220 bp. Fluorescence in situ hybridization studies confirmed these two subclones to be specifically located on the centromeric region of chromosome 8. A 220 bp consensus sequence, derived from nine monomeric repeats, showed no significant homology to alphoid consensus sequences or to other currently known human centromeric DNA sequence. Furthermore, no significant homology was found with any other DNA sequence deposited in the EMBL or GenBank databases, indicating that this chromosome 8 specific repetitive DNA sequence is novel. From slot blot experiments it was estimated that 0.013% of the human genome comprises 1,750 of these monomeric repeats, residing on the centromeric region of chromosome 8 in tandem array(s).  相似文献   

8.
9.
10.
11.
Lysogenic Acetobacter methanolicus strains carrying the prophage Acm1 were found to be unable to synthesize both the capsutar polysaccharide (CPS) and the O-specific side-chain of lipopolysaccharide (LPS) and to represent rough variants of the host bacterium. A 262 bp DNA fragment of phage Acm1, obviously required for interference with LPS biosynthesis, was cloned and expressed in Escherichia coli Independently of the O-type, transformation of various E. coli strains with the recombinant DNA resulted in a suppression of biosynthesis of the O-specific chains. The DNA fragment of phage Acm1 contained three very short open reading frames of 21, 24, and 36 bp. However, attempts to express phage-encoded peptides were not successful. Instead, the Acm1-derived DNA fragment was shown to code for the synthesis of a trans-acting RNA molecule of 97 nucleotides, designated lbi (L PS b iosynthesis-i nterfering) RNA. This RNA contains sequence complementarity to E. coli target RNA sequences and appears to have the ability to form intracellularly RNA hybrid duplexes with mRNA. The data presented in this study support the hypothesis that the phenotypic effect of conversion to rough-type LPS is accompanied by the expression of an antisense RNA of phage Acm1.  相似文献   

12.
13.
14.
人端粒酶RNA基因的克隆与鉴定   总被引:2,自引:0,他引:2  
以人血基因组DNA为模板,合成两段20个寡聚核苷酸为引物,经过PCR扩增,得到480bp的片段,克隆到pMD18-T载体中,经电泳、酶切、PCR鉴定后测定序列。序列分析表明氙克隆的人端粒酶RNA(human telomease RNA,hTR)基因含有480bp,包括约450bp的编码模板区主序列和约30bp的上游调控区序列,其中模板区的11个核苷酸(5’-CUAACCCUAAC-3’)合成端粒亚  相似文献   

15.
16.
17.
RNA结合蛋白通过特异识别RNA底物发挥重要的生物学作用。指数富集的配体系统进化(Systematic evolution of ligands by exponential enrichment,SELEX)技术是一种体外筛选核酸底物的基本方法,SELEX技术通过重复多轮筛选从随机核酸序列库中筛选出特异性与靶物质高度亲和的核酸底物,本研究将利用该技术与二代高通量测序(NGS)相结合,体外合成含有20个随机碱基的RNA文库,将所要研究的蛋白构建到带有可被链亲和酶素磁珠捕获的SBP标记的载体上去,显著提高筛选效率,仅需1轮筛选即可获得所需RNA底物motif。通过该方法获得了人的hn RNP A1的UP1结构域特异识别AGG和AG二种RNA序列,并通过EMSA实验证实其可以与获得的RNA motif结合。这一方法的建立对于研究RNA结合蛋白识别底物的序列特异性,并进一步了解其在生物体内的调控机制有重要意义。  相似文献   

18.
19.
S Han  L A Stuart  S J Degen 《Biochemistry》1991,30(40):9768-9780
A human genomic DNA library was screened by using conditions of reduced stringency with a bovine cDNA probe coding for the kringle domains in prothrombin in order to isolate the human prothrombin gene. Twelve positives were identified, three of which coded for prothrombin (Degen & Davie, 1987). Phage L5 was characterized in more detail because of its strong hybridization to the cDNA probe and its unique restriction map compared to the gene coding for human prothrombin. The gene in L5 was sequenced and found to code for a kringle-containing protein. A human liver cDNA library was screened by using a genomic probe from the gene in L5. cDNAs were isolated that contained sequence identical with regions in the gene in L5. Comparison of the cDNA with the gene indicated that the gene in L5 was composed of 18 exons separated by 17 intervening sequences and is 4690 bp in length. Exons ranged in size from 36 to 242 bp in length while intervening sequences ranged from 77 to 697 bp in length. The putative protein encoded by the gene in L5 contains four kringle domains followed by a serine protease-like domain. This domain structure is identical with that found in hepatocyte growth factor (HGF), although the two proteins are only about 50% identical. On the basis of the similarity of the protein encoded by L5 and HGF, we propose that the putative L5 protein be tentatively called HGF-like protein until a function is identified. The DNA sequence of the gene and cDNA and its translated amino acid sequence were compared against GenBank and NBRF databases. Sequences homologous to DNF15S1 and DNF15S2, human DNF15S2 lung mRNA, and rat acyl-peptide hydrolase were identified in exon 17 to the 3' end of the characterized sequence for the gene. From our results, it is apparent that the gene coding for human HGF-like protein is located at the DNF15S2 locus on human chromosome 3 (3p21). The gene for acyl-peptide hydrolase is 444 bp downstream of the gene coding for HGF-like protein, but on the complementary strand. The DNF15S2 locus has been proposed to code for one or more tumor suppressor genes since this locus is deleted in DNA from small cell lung carcinoma, other lung cancers, renal cell carcinoma, and von Hippel-Lindau syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号