共查询到3条相似文献,搜索用时 0 毫秒
1.
N-Acetoxy-4-acetamidostilbene (N-AcO-AAS) has been shown to react with mononucleosides to give numerous alkylation products [1]. In this work, homopolynucleotides, RNA and DNA were treated with N-[beta-14 C]-AcO-AAS, washed, degraded with S1 nuclease and acid phosphatase, and chromatographed on Sephadex LH-20. RNA prepared in vitro with 14C on cytosine, adenine or guanine was treated with non-radioactive N-AcO-AAS, then digested and chromatographed similarly. By this means, many of the adducts rising from nucleoside reactions were shown to result from treatment of nucleic acids with the same carcinogen, as well as a number of products which have not been matched to products of monomer alkylation. Labeled 1-(4-acetamidophenyl)-2-phenyl-1, 2-ethanediol was detected in the digest of RNA treated with radioactive N-AcO-AAS, suggesting that phosphate alkylation had taken place. 相似文献
2.
!vette Martínez-Vieyra Mario Rodríguez-Varela Diana García-Rubio Beatriz De la Mora-Mojica Juan Méndez-Méndez Carlos Durán-Álvarez Doris Cerecedo 《生物化学与生物物理学报:生物膜》2019,1861(10):182996
Genetic and environmental factors may contribute to high blood pressure, which is termed essential hypertension. Hypertension is a major independent risk factor for cardiovascular disease, stroke and renal failure; thus, elucidation of the etiopathology of hypertension merits further research. We recently reported that the platelets and neutrophils of patients with hypertension exhibit altered biophysical characteristics. In the present study, we assessed whether the major structural elements of erythrocyte plasma membranes are altered in individuals with hypertension. We compared the phospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingosine) and cholesterol contents of erythrocytes from individuals with hypertension (HTN) and healthy individuals (HI) using LC/MS-MS. HTN erythrocytes contained higher phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine contents and a lower cholesterol content than HI erythrocytes. Furthermore, atomic force microscopy revealed important morphological changes in HTN erythrocytes, which reflected the increased membrane fragility and fluidity and higher levels of oxidative stress observed in HTN erythrocytes using spectrophotofluorometry, flow cytometry and spectrometry. This study reveals that alterations to the lipid contents of erythrocyte plasma membranes occur in hypertension, and these alterations in lipid composition result in morphological and physiological abnormalities that modify the dynamic properties of erythrocytes and contribute to the pathophysiology of hypertension. 相似文献
3.
《Systematic and applied microbiology》2023,46(2):126404
The composition of the core lipids and intact polar lipids (IPLs) of five Rubrobacter species was examined. Methylated (ω-4) fatty acids (FAs) characterized the core lipids of Rubrobacter radiotolerans, R. xylanophilus and R. bracarensis. In contrast, R. calidifluminis and R. naiadicus lacked ω-4 methyl FAs but instead contained abundant (i.e., 34–41 % of the core lipids) ω-cyclohexyl FAs not reported before in the order Rubrobacterales. Their genomes contained an almost complete operon encoding proteins enabling production of cyclohexane carboxylic acid CoA thioester, which acts as a building block for ω-cyclohexyl FAs in other bacteria. Hence, the most plausible explanation for the biosynthesis of these cyclic FAs in R. calidifluminis and R. naiadicus is a recent acquisition of this operon. All strains contained 1-O-alkyl glycerol ether lipids in abundance (up to 46 % of the core lipids), in line with the dominance (>90 %) of mixed ether/ester IPLs with a variety of polar headgroups. The IPL head group distribution of R. calidifluminis and R. naiadicus differed, e.g. they lacked a novel IPL tentatively assigned as phosphothreoninol. The genomes of all five Rubrobacter species contained a putative operon encoding the synthesis of the 1-O-alkyl glycerol phosphate, the presumed building block of mixed ether/ester IPLs, which shows some resemblance with an operon enabling ether lipid production in various other aerobic bacteria but requires more study. The uncommon dominance of mixed ether/ester IPLs in Rubrobacter species exemplifies our recent growing awareness that the lipid divide between archaea and bacteria/eukaryotes is not as clear cut as previously thought. 相似文献