首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the concepts, the analytical methods, andthe experimental devices used in a reappraisal of the problemsof solute and water uptake which utilizes both quiescent andactively growing cells. The tissue used is drawn from the secondaryphloem of the carrot root and, in all experiments, it is underconditions of aseptic culture which permit both inorganic andorganic solutes to be studied for relatively long periods. The range of responses of the explanted carrot tissue has beenobserved in different media. These include simple inorganicsalt solutions (CaCl2, KC1, NaCl, etc.), a full organic andinorganic nutrient medium and also the latter supplemented bystimuli that unleash the full ability of the otherwise restingcells to grow. The effects on both growth and composition of the cells havebeen observed with time. The high osmotic value of the maturenon-growing cells may be made up, non-specifically, by salts(KC1, NaCl) or organic solutes (sugars) which are accumulated;when growth is not primarily involved these solutes may thenbehave reciprocally in accordance with supply, in the media,and demand, in the cells. Rapidly dividing cells, on the other hand, creating vacuoles,have lower osmotic value, greater specificity for potassium,and the solutes they store are under more endogenous than exogenouscontrol. Between these extremes the solutes which are accumulated dependupon the levels of growth induced which in turn are responsesto the nutrients and stimuli furnished. These observations and their interpretation set a trend forthe papers that are to follow.  相似文献   

2.
An earlier paper established the range of solute compositionthat may obtain in aseptically cultured carrot explants growingin different media which regulate either cell enlargement orcell division in the explants. This paper concentrates uponthe most rapidly growing cultures, containing cells which individuallypass through their cycle of division and enlargement and collectivelytrace a sigmoidal curve of growth for the explant as a whole.The time course of growth is interpreted in terms of the numberand average size of the cells and, in different phases, in termsof the changes in solute uptake and content of the cells. Thesedata are correlated with the concomitant metabolic characteristicsof the tissue, notably its protein synthesis. In the early exponential growth phase of the explant, when theemphasis is on cells in division, the organic solutes whichare absorbed are used to create form and complex substance;concomitantly, the cells develop a specific requirement forpotassium, selectively preferred to sodium, and balanced byorganic anions rather than halide. These relationships changeas cells develop; the emphasis is then upon the maintenanceof osmotic value in cells with enlarging vacuoles. The developingvacuoles preferentially store organic solutes but, later, thesesolutes may be replaced by natural salts (KC1, NaCl) when organicsupplies are depleted. This latter accumulation of salts doesnot display as markedly the disparity between potassium, sodium,and chloride which was so evident in the cell multiplicationphase of growth. Superimposed upon these relationships are certain clonal differenceswhich are interpreted compatibly with the above concepts. Thedata obtained on many clones reinforce the view that the changesin ion relations of cells with growth, as noted above, are compensatedby accumulation of organic solutes as cells build osmoticallyactive concentrations of solutes in a system that primarilycontrols the internal activity of their water.  相似文献   

3.
Procedures previously described were used to study growth andsolute content of aseptically cultured carrot explants as affectedby supplementary salts in the medium. The salts chosen (KC1,KNO3, NH4,Cl, and NH4,NO3) contrasted, with appropriate controls,the effects due to nitrate and ammonium. Growth was measuredin terms of fresh weight, the number and average size of cells:solute concentrations were recorded for total solutes, sugars,soluble nitrogen compounds, and the electrolytes K+, Na+, C1,NO3, and organic acids. The time-response curves of thecultures were traced at a fixed concentration of the added saltsand the effects due to the concentration of the supplementarysalts were tested after a fixed time period, For the same nitrogensource the concentrations of metabolites and solutes in cellswere very similar despite some clonal differences in their growth.When cells in a nitrate medium were small and dividing, thecultures had a low osmotic value, contained K+ as the principalcation balanced by organic acid, had relatively low sugar content,and their enriched total nitrogen content emphasized proteinrather than soluble nitrogen compounds. Later, as the cellsbecame older and larger, salts (K+, organic anions, Cl)contributed substantially to their increased osmotic value butthey accumulated sugar as their main, osmotically active solute,and the ratio of soluble to protein nitrogen declined as proteinsynthesis progressed. The extra nitrogen supplied by the additionalpotassium nitrate contributed more to protein and caused potassium,organic acids, and sugars to accumulate to higher levela. Supplementaryammonium salts required that more sugar be metabolized to organicnitrogen compounds (e.g. glutamine), contributed more to solublethan to protein nitrogen, and sharply reduced. both the osmoticvalue of the cells and the potassium linked to organic anions.The selectivity of the growing cells for K+ over Na+ and theirdiscrimination. between alkali cations (Ka++Na+) and halides(C1) were relaxed in the presence of ammonia. Attentionis drawn to the implications of these results for the accumulationof solutes, organic and inorganic, by dividing and enlargingcells.  相似文献   

4.
The need to re-evaluate concepts of salt and solute accumulationin the light of evidence derived from cells at all stages oftheir growth and development is recognized. The problem is seenin terms of the nutrition of flowering plants, the growing cellsof which are essentially heterotrophic, and the solutes of whichare progressively acquired and redistributed during ontogeny.This is traced from the zygote in the embryo sac to an establishedplant body with its evident ‘source-sink’ relationshipsand physiological ‘division of labour’ between organs.The evidence accrued from aseptic cultures which were manipulatedto reveal the range of solutes in cells which simulated thenormal course of development in situ as they multiplied, vacuolated,enlarged, and eventually matured. The regulatory control exercisedby cells in these developmental stages over the total osmoticvalue and the relative composition of their solutes (organicand inorganic) is both described and interpreted. The reversiblechanges that may occur (within a regulated osmotic value) inthe solutes of established cells as they replace sugars by saltsof organic acids, by organic nitrogen compounds, or by alkalihalides are both described and related to events that occurin the developed plant body. Particular significance is attachedto the consequences of the normal need of land plants to acquirenitrogen from nitrate and of the intervention of reduced nitrogenunder circumstances in which the need for non-metabolizableions (e.g. alkali halides) is, thereby, drastically curtailed.Cells in multiplication require energy to create new structureand do not emphasize the accumulation of solutes in bulk; however,when they enlarge, energy is obligated to the storage of solutes(organic and inorganic) to support their cytoplasm which isbeing ‘spread out thin’. These events involve morethan the properties of membranes, or their relations to individualions or molecules, for they require an understanding of cellsas compartmented, metabolic, and osmotic machines, and of theirvariously obligated energy relationships. Moreover, the subjectnow needs to be seen as an aspect of the over-all nutritionof cells, organs, and organisms as they grow and develop.  相似文献   

5.
Multiphasic osmotic adjustment in a euryhaline cyanobacterium   总被引:5,自引:0,他引:5  
Abstract Transfer of Synechocystis PCC6714 from a freshwater medium to a saline medium caused the cells to shrink; rapid entry of NaCl resulted in a partial recovery of cellular volume within 2 min. Active extrusion of internal Na+ in exchange for extracellular K+ then occurred (within 20 min). Finally, the low- M r carbohydrates sucrose and glucosylglycerol were accumulated and internal KC1 levels declined. In long-term growth experiments, the relative importance of sucrose as a component of the low- M r organic solute fraction decreased and glucosylglycerol became the single most important intracellular solute. These observations demonstrate that several inorganic and organic solutes are involved in osmotic adjustment in this cyanobacterium, with sequential changes in the relative importance of each solute following transfer to a saline medium.  相似文献   

6.
Summary Earlier papers of this series relate to different growth-promoting substances and systems which, singly and in combination, have interacted with trace elements (Mn and Mo) and Fe to induce growth and to affect the metabolism of aseptic cultures of carrot. The solutes of cultured carrot cells (K+, Na+, Cl, total solutes) are also affected. Two clones were grown in 9 combinations of growth factors and under 4 trace-element regimes (a complete complement including Fe, and this complement lacking either Mn or Mo, or both Mn and Mo), a total of 36 treatments under otherwise standardized experimental conditions. Under the treatments applied the number of cells varied over a 35fold range and their average size over a 7fold range; the concomitant effects on their solutes are expressed in terms of concentrations and of total content per cell. Both growth and the solutes accumulated were variously affected by carrot growth-promoting system I (mediated by inositol), by system II (mediated by IAA), and by coconut milk in the presence of Fe, with and without Mn, Mo, or Mn and Mo.The greatest concentrations of total solutes occurred in tissue cultured in nutrient solutions which lacked the stimuli to rapid cell multiplication and were also limited by the trace elements Mn and Mo. Moreover, specific regulatory effects of the trace elements on solute content, not solely attributable to their effects on cell growth, have been noted. An imbalanced growth-factor regime (zeatin acting alone, i.e. without IAA) shifted the normal preference for K+ over Na+ strongly toward Na+, a trend which could also be induced by certain trace elements and more balanced growth-factor regimes, e.g. in a basal coconut milk medium lacking only Mn.The data are interpreted in the context of views on the de-novo uptake of salts and solutes in cultured cells as they grow. These cells respond to a network, or matrix, of interacting factors by distinctive effects that are attributable to the component parts of the culture medium acting singly and in various combinations. These interactions (involving trace elements and exogenous growth factors) control growth (fresh weight, number and size of cells) and regulate the solutes (organic and inorganic; K+ vs. Na+; organic anions vs. Cl) which the cells acquire as they grow and develop. The intensity of the response of the cultures to balanced, or imbalanced, growth factors creates the internal spaces accessible to solutes; and the metabolism, as it is also affected by growth factors and trace elements, determines how these spaces are to be filled at a given osmotic value. The evidence shows the range of factors that affect the accumulation of solutes in cells as they grow and is to be contrasted with conventional observations on mature cells held in steady states under conditions that preclude all growth and when only a single ionic species is followed over a very short interval of time.  相似文献   

7.
Methanobacterium thermoautotrophicum delta H and Marburg were adapted to grow in medium containing up to 0.65 M NaCl. From 0.01 to 0.5 M NaCl, there was a lag before cell growth which increased with increasing external NaCl. The effect of NaCl on methane production was not significant once the cells began to grow. Intracellular solutes were monitored by nuclear magnetic resonance (NMR) spectroscopy as a function of osmotic stress. In the delta H strain, the major intracellular small organic solutes, cyclic-2,3-diphosphoglycerate and glutamate, increased at most twofold between 0.01 and 0.4 M NaCl and decreased when the external NaCl was 0.5 M. M. thermoautotrophicum Marburg similarly showed a decrease in solute (cyclic-2,3-diphosphoglycerate, 1,3,4,6-tetracarboxyhexane, and L-alpha-glutamate) concentrations for cells grown in medium containing > 0.5 M NaCl. At 0.65 M NaCl, a new organic solute, which was visible in only trace amounts at the lower NaCl concentrations, became the dominant solute. Intracellular potassium in the delta H strain, detected by atomic absorption and 39K NMR, was roughly constant between 0.01 and 0.4 M and then decreased as the external NaCl increased further. The high intracellular K+ was balanced by the negative charges of the organic osmolytes. At the higher external salt concentrations, it is suggested that Na+ and possibly Cl- ions are internalized to provide osmotic balance. A striking difference of strain Marburg from strain delta H was that yeast extract facilitated growth in high-NaCl-containing medium. The yeast extract supplied only trace NMR-detectable solutes (e.g., betaine) but had a large effect on endogenous glutamate levels, which were significantly decreased. Exogenous choline and glycine, instead of yeast extract, also aided growth in NaCl-containing media. Both solutes were internalized with the choline converted to betaine; the contribution to osmotic balance of these species was 20 to 25% of the total small-molecule pool. These results indicate that M. thermoautotrophicum shows little changes in its internal solutes over a wide range of external NaCl. Furthermore, they illustrate the considerable differences in physiology in the delta H and Marburg strains of this organism.  相似文献   

8.
The growing cells of hydroponic maize roots expand at constant turgor pressure (0.48 MPa) both when grown in low-(0.5 mol m-3 CaCl2) or full-nutrient (Hoagland's) solution and also when seedlings are stressed osmotically (0.96 MPa mannitol). Cell osmotic pressure decreases by 0.1–0.2 MPa during expansion. Despite this, total solute influx largely matches the continuously-varying volume expansion-rate of each cell. K+ in the non-osmotically stressed roots is a significant exception-its concentration dropping by 50% regardless of the presence or absence of K+ in the nutrient medium. This corresponds to the drop in osmotic pressure. Nitrate appears to replace Cl- in the Hoagland-grown cells.Analogous insensitivity of solute gradients to external solutes is observed in the radial distribution of water and solutes in the cortex 12 mm from the tip. Uniform turgor and osmotic pressures are accompanied by opposite gradients of K+ and Cl-, outwards, and hexoses and amino acids, inwards, for plants grown in either 0.5 mol m-3 CaCl2 or Hoagland's solution (with negligible Cl-). K+ and Cl- levels within both gradients were slightly higher when the ions were available in the medium. The gradients themselves are independent of the direction of solute supply. In CaCl2 solution all other nutrients must come from the stele, in Hoagland's solution inorganic solutes are available in the medium.24 h after osmotic stress, turgor pressure is recovered at all points in each gradient by osmotic adjustment using organic solutes. Remarkably, K+ and Cl- levels hardly change, despite their ready availability. Hexoses are responsible for some 50% of the adjustment with mannitol for a further 30%. Some 20% of the final osmotic pressure remains to be accounted for. Proline and sucrose are not significantly involved. Under all conditions a standing water potential step of 0.2 MPa between the rhizodermis and its hydroponic medium was found. We suggest that this is due to solute leakage.Abbreviations EDX energy dispersive X-ray microanalysis - water potential - 11-1 cell osmotic pressure - P turgor pressure  相似文献   

9.
The capacity of papillary cells to adapt to elevated osmotic concentrations is unusual among mammalian cells. This capacity was evaluated by using primary tissue culture. Viability and growth of cells in rat renal papillary tissue explants were assessed after culture in media adjusted with urea and sodium chloride to various osmotic concentrations between 300 and 1,500 mOsm/kg water. The survival of cells, including cells resembling those of the collecting ducts and the loop of Henle, was greatest in medium adjusted to 1,000 mOsm with equiosmolar amounts of the two solutes. At 1,500 mOsm only cuboidal tubular epithelium resembling collecting duct epithelial cells survived. In contrast, cells of cortical tissue survived and grew at 300 and 640 mOsm, but not at 1,000 mOsm or above. Epithelial monolayers appeared to proliferate from collecting ducts and spread over the surface of the explants as well as onto the glass surface in the culture dish. Epithelial growth of medullary tissue was most rapid at 300 mOsm and was slower at 700 and 1,000 mOsm. Monolayers did not form at 1,500 mOsm; however, epithelial overgrowth of explants did occur. Hydropenia in the donor animal did not significantly affect the viability or growth of cultured papillary tissue. Explants cultured for 5 days at 300 mOsm followed by a stepwise increase in medium osmolality to 1,100 or 1,500 mOsm and cultured for 3 more days showed low or no survival whereas explants cultured at 700 mOsm survived such increases. Explants cultured for 5 days at 1,500 mOsm survived and grew monolayers when lowered to 300 mOsm. Poor viability and no epithelial proliferation were observed in explants cultured in medium adjusted to 900 mOsm with either urea or sodium chloride alone, suggesting that a mixture of the two solutes in the extracellular space, as found in vivo, may be essential in achieving elevated osmolalities.  相似文献   

10.
The aim of this study was to identify the compatible solutes accumulated by Pseudomonas putida S12 subjected to osmotic stress. In response to reduced water activity, P. putida S12 accumulated Nalpha-acetylglutaminylglutamine amide (NAGGN) simultaneously with a novel compatible solute identified as mannitol (using 13C- and 1H-nuclear magnetic resonance, liquid chromatography-mass spectroscopy and high-performance liquid chromatography methods) to maximum concentrations of 74 and 258 micromol g (dry weight) of cells(-1), respectively. The intracellular amounts of each solute varied with both the type and amount of osmolyte applied to induce osmotic stress in the medium. Both solutes were synthesized de novo. Addition of betaine to the medium resulted in accumulation of this compound and depletion of both NAGGN and mannitol. Mannitol and NAGGN were accumulated when sucrose instead of salts was used to reduce the medium water activity. Furthermore, both compatible solutes were accumulated when glucose was substituted by other carbon sources. However, the intracellular quantities of mannitol decreased when fructose, succinate, or lactate were applied as a carbon source. Mannitol was also raised to high intracellular concentrations by other salt-stressed Pseudomonas putida strains. This is the first study demonstrating a principal role for the de novo-synthesized polyol mannitol in osmoadaptation of a heterotrophic eubacterium.  相似文献   

11.
A study has been made of the effects of auxin and growth on the ability of Avena coleoptile sections to osmoregulate, i.e. to take up solutes so as to maintain their osmotic concentration, turgor pressure, and growth rate. The high auxin-induced growth rate of Avena coleoptiles is maintained when cells are provided sucrose, glucose, NaCl, or KCl as a source of absorbable solutes, but not when 2-deoxy-d-glucose or 3-O-methyl-d-glucose is used. In the absence of auxin, cells take up solutes from a 2% sucrose solution and the osmotic concentration increases. The rate of solute uptake is even greater in the presence of auxin or fusicoccin, but the osmotic concentration rises only slightly because of the water taken up during growth. Solute uptake is not stimulated by auxin when growth is inhibited osmotically or by calcium ions. Solute uptake appears to have two components: a basal rate, independent of auxin or growth, and an additional uptake which is proportional to growth. Osmoregulation of sections may be limited by the rate of entry of solutes into the tissue rather than by their rate of uptake into the cells.  相似文献   

12.
AIMS: The effect of modifying the water activity (a(w)) of Pantoea agglomerans growth medium with the ionic solute NaCl on water stress resistance, heat-shock survival and intracellular accumulation of the compatible solutes glycine-betaine and ectoine were determined. METHODS AND RESULTS: The bacterium was cultured in an unmodified liquid medium or that modified with NaCl to 0.98 and 0.97 a(w), and viability of cells evaluated on a 0.96 a(w)-modified solid media to check water stress tolerance. Cells grown under ionic stress had better water stress tolerance than control cells. These cells also had cross-protection to heat stress (30 min, 45 degrees C). The modified cells accumulated substantial amounts of the compatible solutes glycine-betaine and ectoine in contrast to the control cells, which contained little or none of these two compounds. CONCLUSIONS: Improvement in osmotic and thermal tolerance of cells of the biocontrol agent P. agglomerans by modifying growth media with the ionic solute NaCl was achieved. The compatible solutes glycine-betaine and ectoine play a critical role in environmental stress tolerance improvement. SIGNIFICANCE AND IMPACT OF THE STUDY: This approach provides a method for improving the physiological quality of inocula and could have implications for formulation and shelf-life of biocontrol agents.  相似文献   

13.
Vibrio cholerae is both an intestinal pathogen and a microbe in the estuarine community. To persist in the estuarine environment, V. cholerae must adjust to changes in ionic composition and osmolarity. These changes in the aquatic environment have been correlated with cholera epidemics. In this work, we study the response of V. cholerae to increases in environmental osmolarity. Optimal growth of V. cholerae in minimal medium requires supplementation with 200 mM NaCl and KCl. However, when the NaCl concentration is increased beyond 200 mM, a proportionate delay in growth is observed. During this delay in growth, osmotic equilibrium is reached by cytoplasmic accumulation of small, uncharged solutes that are compatible with growth. We show that synthesis of the compatible solute ectoine and transport of the compatible solute glycine betaine impact the length of the osmoadaptive growth delay. We also demonstrate that high-osmolarity-adapted V. cholerae displays a growth advantage when competed against unadapted cells in high-osmolarity medium. In contrast, low-osmolarity-adapted V. cholerae displays no growth advantage when competed against high-osmolarity-adapted cells in low-osmolarity medium. These results may have implications for V. cholerae population dynamics when seawater and freshwater and their attendant microbes mix.  相似文献   

14.
Role of Ectoine in Vibrio cholerae Osmoadaptation   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrio cholerae is both an intestinal pathogen and a microbe in the estuarine community. To persist in the estuarine environment, V. cholerae must adjust to changes in ionic composition and osmolarity. These changes in the aquatic environment have been correlated with cholera epidemics. In this work, we study the response of V. cholerae to increases in environmental osmolarity. Optimal growth of V. cholerae in minimal medium requires supplementation with 200 mM NaCl and KCl. However, when the NaCl concentration is increased beyond 200 mM, a proportionate delay in growth is observed. During this delay in growth, osmotic equilibrium is reached by cytoplasmic accumulation of small, uncharged solutes that are compatible with growth. We show that synthesis of the compatible solute ectoine and transport of the compatible solute glycine betaine impact the length of the osmoadaptive growth delay. We also demonstrate that high-osmolarity-adapted V. cholerae displays a growth advantage when competed against unadapted cells in high-osmolarity medium. In contrast, low-osmolarity-adapted V. cholerae displays no growth advantage when competed against high-osmolarity-adapted cells in low-osmolarity medium. These results may have implications for V. cholerae population dynamics when seawater and freshwater and their attendant microbes mix.  相似文献   

15.
R. F. Meyer  J. S. Boyer 《Planta》1981,151(5):482-489
Soybean (Glycine max (L.) Merr.) seedlings osmoregulate when the supply of water is limited around the roots. The osmoregulation involves solute accumulation (osmotic adjustment) by the elongating region of the hypocotyls. We investigated the relationship between growth, solute accumulation, and the partitioning of solutes during osmoregulation. Darkgrown seedlings were transplanted to vermiculite containing 1/8 (0.13 x) the water of the controls. Within 12–15 h, the osmotic potential of the elongating region had decreased to-12 bar, but it was-7 bar in the controls. This osmoregulation involved a true solute accumulation by the hypocotyls, since cell volume and turgor were virtually the same regardless of the water regime. The hypocotyls having low water potentials elongated slowly but, when deprived of their cotyledons, did not elongate or accumulate solute. This result indicated a cotyledonary origin for the solutes and a dependence of slow growth on osmotic adjustment. The translocation of nonrespired dry matter from the cotyledons to the seedling axis was unaffected by the availability of water, but partitioning was altered. In the first 12 h, dry matter accumulated in the elongating region of the 0.13 x hypocotyls, and osmotic adjustment occurred. The solutes involved were mostly free amino acids, glucose, fructose, and sucrose, and these accounted for most of the increased dry weight. After osmotic adjustment was complete, dry matter ceased to accumulate in the hypocotyls and bypassed them to accumulate in the roots, which grew faster than the control roots. The proliferation of the roots resulted in an increased root/shoot ratio, a common response of plants to dry conditions.Osmotic adjustment occurred in the elongating region of the hypocotyls because solute utilization for growth decreased while solute uptake continued. Adjustment was completed when solute uptake subsequently decreased, and uptake then balanced utilization. The control of osmotic adjustment was therefore the rate of solute utilization and, secondarily, the rate of solute uptake. Elongation was inhibited by unknown factors(s) despite the turgor and substrates associated with osmotic adjustment. The remaining slow elongation depended on osmotic adjustment and represented some optimum between the necessary inhibition for solute accumulation and the necessary growth for seedling establishment.  相似文献   

16.
The response of the L-lysine producing Corynebacterium glutamicum strain MH20-22B to osmotic stress was studied in batch cultures. To mimic the conditions during a fermentation process the long term adaptation of cells subjected to a constant osmotic stress between 1.0 and 2.5 osM was investigated. Cytoplasmic water content and volume of C. glutamicum cells were found to depend on growth phase, extent of osmotic stress and availability of betaine. The maximal cytoplasmic volumes, which were highest at maximal growth rate, were linearily related to osmotic stress, whereas in stationary cells no active volume regulation was observed. Under severe osmotic stress proline was the prominent compatible solute in growing cells. Uptake of betaine, if available in the medium, reduced the concentration of proline from 750 to 300 mM, indicating that uptake of compatible solutes is preferred to synthesis. Furthermore, betaine was shown to have a higher efficiency to counteract osmotic stress, since the overall concentration of compatible solutes was lower in the presence of betaine. Under severe osmotic stress, the addition of betaine shifted L-lysine production in MH20-22B to earlier fermentation times and increased both product concentration and yield in these phases, but did not improve the final L-lysine yield.  相似文献   

17.
Abstract. The effect of accumulation of 3- O -methylglucose (MG) on growth and steady-stale concentrations of the endogenous osmotic solutes proline and sucrose was studied in Chlorella emersonii grown at external osmotic pressure (II) of 0.08-1.64 MPa. NaCL was used as osmoticum. The total solute content of the cells was manipulated by supplying 2 mol m−3 MG for 4 and 48 h. MG accumulated to 50–230 mol m−3 within 4h and was not metabolized. Uptake of MG resulted in decreases in concentrations of proline and sucrose, the two solutes mainly responsible for osmotic adaptation of C. emersonii to high II. After 4 or 48 h growth in the presence of MG, the decreases in concentration of proline and sucrose were as predicted from the contribution of MG to the total solute content of the cell.  相似文献   

18.
Osmotic adjustment in the filamentous fungus Aspergillus nidulans.   总被引:5,自引:0,他引:5       下载免费PDF全文
Aspergillus nidulans was shown to be xerotolerant, with optimal radial growth on basal medium amended with 0.5 M NaCl (osmotic potential [psi s] of medium, -3 MPa), 50% optimal growth on medium amended with 1.6 M NaCl (psi s of medium, -8.7 MPa), and little growth on medium amended with 3.4 M NaCl (psi s of medium, -21 MPa). The intracellular content of soluble carbohydrates and of selected cations was measured after growth on basal medium, on this medium osmotically amended with NaCl, KCl, glucose, or glycerol, and also after hyperosmotic and hypoosmotic transfer. The results implicate glycerol and erythritol as the major osmoregulatory solutes. They both accumulated during growth on osmotically amended media, as well as after hyperosmotic transfer, except on glycerol-amended media, in which erythritol did not accumulate. Furthermore, they both decreased in amount after hypoosmotic transfer. With the exception of glycerol, the extracellular osmotic solute did not accumulate intracellularly when mycelium was grown in osmotically amended media, but it accumulated after hyperosmotic transfer. It was concluded that the extracellular solute usually plays only a transient role in osmotic adaptation. The intracellular content of soluble carbohydrates and cations measured could reasonably account for the intracellular osmotic potential of mycelium growing on osmotically amended media.  相似文献   

19.
Peeled Avena sativa coleoptile sections (i.e. sections from which the epidermis has been removed) have been used to study the control of solute uptake under conditions where the uptake is not limited by the cuticular barrier. In the presence of 2% sucrose, auxin enhances the rate at which the total osmotic solutes increase, but this appears to be a response to the increased growth rate, inasmuch as the auxin effect is eliminated when growth is inhibited osmotically. When sections are incubated in sucrose or in 20 millimolar NaCl, the osmotic concentration increases until a plateau is reached after 8 to 24 hours. Auxin has no effect on the initial rate of increase in osmotic concentration but causes the osmotic concentration to reach a plateau earlier and at a lower osmotic conentration value. This difference in steady-state osmotic concentration is, in part, a response to auxin itself, as it persists when auxin-induced growth is inhibited osmotically. The upper limit for osmotic concentration does not appear to be determined by the turgor pressure, inasmuch as a combination of sucrose and NaCl gave a higher plateau osmotic concentration than did either solute alone. We suggest that the rate of solute uptake is determined by the availability of absorbable solutes and by the surface area exposed to the solutes. Each absorbable solute reaches a maximum internal concentration independent of other absorbable solutes; the steady-state osmotic concentration is simply the sum of these individual internal concentrations.  相似文献   

20.
Eight cultivars Sorghum bicolor (L.) Moench were grown as callus cultures under induced, prolonged water stress (8 weeks), with polyethylene glycol in the medium. Concentrations of soluble carbohydrates and organic acids in callus were measured at the end of the growth period to determine differences in response to prolonged water stress. Sucrose, glucose, fructose, and malate were the predominant solutes detected in all callus at all water potentials. All cultivars had high levels of solutes in the absence of water stress and low levels in the presence of prolonged water stress. However, at low water potentials, low levels of solutes were observed in drought-tolerant cultivar callus and high solute levels were observed in drought-susceptible cultivar callus. Estimated sucrose concentrations were significantly higher in water-stressed, susceptible cultivar callus. Large solute concentrations in susceptible cultivar callus were attributed to osmotic adjustment and/or reduced growth during water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号