首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene prmC, encoding the putative S-adenosyl-L-methionine (AdoMet)-dependent methyltransferase (MTase) of release factors (RFs) of the obligate intracellular pathogen Chlamydia trachomatis, was functionally analyzed. Chlamydial PrmC expression suppresses the growth defect of a prmC knockout strain of Escherichia coli K-12, suggesting an interaction of chlamydial PrmC with E. coli RFs in vivo. In vivo methylation assays carried out with recombinant PrmC and RFs of chlamydial origin demonstrated that PrmC methylates RFs within the tryptic fragment containing the universally conserved sequence motif Gly-Gly-Gln. This is consistent with the enzymatic properties of PrmC of E. coli origin. We conclude that C. trachomatis PrmC functions as an N5-glutamine AdoMet-dependent MTase, involved in methylation of RFs.  相似文献   

2.
3.
4.
Chen C  Li F  Montelaro RC 《Journal of virology》2001,75(20):9762-9770
Previous studies utilizing Gag polyprotein budding assays with transfected cells reveal that the equine infectious anemia virus (EIAV) Gag p9 protein provides a late assembly function mediated by a critical Y(23)P(24)D(25)L(26) motif (L-domain) to release viral particles from the plasma membrane. To elucidate further the role of EIAV p9 in virus assembly and replication, we have examined the replication properties of a defined series of p9 truncation and site-directed mutations in the context of a reference infectious molecular proviral clone, EIAV(uk). Characterization of these p9 proviral mutants revealed new functional properties of p9 in EIAV replication, not previously elucidated by Gag polyprotein budding assays. The results of these studies demonstrated that only the N-terminal 31 amino acids of a total of 51 residues in the complete p9 protein were required to maintain replication competence in transfected equine cells; proviral mutants with p9 C-terminal truncations of 20 or fewer amino acids remained replication competent, while mutants with truncations of 21 or more residues were completely replication defective. The inability of the defective p9 proviral mutations to produce infectious virus could not be attributed to defects in Gag polyprotein expression or processing, in virion RT activity, or in virus budding. While proviral replication competence appeared to be associated with the presence of a K(30)K(31) motif and potential ubiquitination of the EIAV p9 protein, mutations of these lysine residues to methionines produced variant proviruses that replicated as well as the parental EIAV(uk) in transfected ED cells. Thus, these observations reveal for the first time that EIAV p9 is not absolutely required for virus budding in the context of proviral gene expression, suggesting that other EIAV proteins can at least in part mediate late budding functions previously associated with the p9 protein. In addition, the data define a function for EIAV p9 in the infectivity of virus particles, indicating a previously unrecognized role for this Gag protein in EIAV replication.  相似文献   

5.
The adenovirus type 5 (Ad5) E1B-55K and E4orf6 (E1B-55K/E4orf6) proteins are multifunctional regulators of Ad5 replication, participating in many processes required for virus growth. A complex containing the two proteins mediates the degradation of cellular proteins through assembly of an E3 ubiquitin ligase and induces shutoff of host cell protein synthesis through selective nucleocytoplasmic viral late mRNA export. Both proteins shuttle between the nuclear and cytoplasmic compartments via leucine-rich nuclear export signals (NES). However, the role of their NES-dependent export in viral replication has not been established. It was initially shown that mutations in the E4orf6 NES negatively affect viral late gene expression in transfection/infection complementation assays, suggesting that E1B-55K/E4orf6-dependent viral late mRNA export involves a CRM1 export pathway. However, a different conclusion was drawn from similar studies showing that E1B-55K/E4orf6 promote late gene expression without active CRM1 or functional NES. To evaluate the role of the E1B-55K/E4orf6 NES in viral replication in the context of Ad-infected cells and in the presence of functional CRM1, we generated virus mutants carrying amino acid exchanges in the NES of either or both proteins. Phenotypic analyses revealed that mutations in the NES of E1B-55K and/or E4orf6 had no or only moderate effects on viral DNA replication, viral late protein synthesis, or viral late mRNA export. Significantly, such mutations also did not interfere with the degradation of cellular substrates, indicating that the NES of E1B-55K or E4orf6 is dispensable both for late gene expression and for the activity associated with the E3 ubiquitin ligase.  相似文献   

6.
A Lu  L K Miller 《Journal of virology》1995,69(10):6265-6272
A plasmid library of 18 late expression factor (LEF) genes (LEF library) from the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) supports transient expression from a late viral promoter in the SF-21 cell line, derived from Spodoptera frugiperda. We found, however, that this LEF library was unable to support expression from the same promoter in the TN-368 cell line, derived from Trichoplusia ni, which is also permissive for AcMNPV replication. To identify the additional factor(s) required for expression in TN-368 cells, we cotransfected the LEF library with clones representing portions of the AcMNPV genome not represented in the LEF library. A single additional gene was identified; this gene corresponded to ORF70 of the complete AcMNPV sequence and potentially encodes a 34-kDa cysteine-rich polypeptide. Because of its differential effect on late gene expression in the two cell lines, we renamed ORF70 hcf-1 (for host cell-specific factor 1). hcf-1 was involved in expression from reporter plasmids under late and very late but not early promoter control, indicating that it was also a LEF gene. Plasmid DNA replication assays indicated that HCF-1 was involved in virus origin-specific DNA replication in TN-368 cells. Three LEF genes, ie-2, lef-7, and p35, required for optimal virus origin-specific plasmid DNA replication or stability in SF-21 cells had little or no influence in TN-368 cells. Thus, as determined by transient-expression assays, cell line-specific and potentially host-specific factors are required for origin-specific DNA replication or stability.  相似文献   

7.
The gene orfX is conserved among all staphylococci, and its complete sequence is maintained upon insertion of the staphylococcal chromosome cassette mec (SCCmec) genomic island, containing the gene encoding resistance to β-lactam antibiotics (mecA), into its C terminus. The function of OrfX has not been determined. We show that OrfX was constitutively produced during growth, that orfX could be inactivated without altering bacterial growth, and that insertion of SCCmec did not alter gene expression. We solved the crystal structure of OrfX at 1.7 Å and found that it belongs to the S-adenosyl-l-methionine (AdoMet)-dependent α/β-knot superfamily of SPOUT methyltransferases (MTases), with a high structural homology to YbeA, the gene product of the Escherichia coli 70 S ribosomal MTase RlmH. MTase activity was confirmed by demonstrating the OrfX-dependent methylation of the Staphylococcus aureus 70 S ribosome. When OrfX was crystallized in the presence of its AdoMet substrate, we found that each monomer of the homodimeric structure bound AdoMet in its active site. Solution studies using isothermal titration calorimetry confirmed that each monomer bound AdoMet but with different binding affinities (Kd = 52 ± 0.4 and 606 ± 2 μm). In addition, the structure shows that the AdoMet-binding pocket, formed by a deep trefoil knot, contains a bound phosphate molecule, which is the likely nucleotide methylation site. This study represents the first characterization of a staphylococcal ribosomal MTase and provides the first crystal structure of a member of the α/β-knot superfamily of SPOUT MTases in the RlmH or COG1576 family with bound AdoMet.  相似文献   

8.
The flavivirus methyltransferase (MTase) sequentially methylates the N7 and 2′-O positions of the viral RNA cap (GpppA-RNA → m7GpppA-RNA → m7GpppAm-RNA), using S-adenosyl-l-methionine (AdoMet) as a methyl donor. We report here that sinefungin (SIN), an AdoMet analog, inhibits several flaviviruses through suppression of viral MTase. The crystal structure of West Nile virus MTase in complex with SIN inhibitor at 2.0-Å resolution revealed a flavivirus-conserved hydrophobic pocket located next to the AdoMet-binding site. The pocket is functionally critical in the viral replication and cap methylations. In addition, the N7 methylation efficiency was found to correlate with the viral replication ability. Thus, SIN analogs with modifications that interact with the hydrophobic pocket are potential specific inhibitors of flavivirus MTase.  相似文献   

9.
Y Liu  E J Oakeley  L Sun    J P Jost 《Nucleic acids research》1998,26(4):1038-1045
It has been shown that, during the S-phase of the cell cycle, the mouse DNA methyltransferase (DNA MTase) is targeted to sites of DNA replication by an amino acid sequence (aa 207-455) lying in the N-terminal domain of the enzyme [Leonhardt, H., Page, A. W., Weier, H. U. and Bestor, T. H. (1992) Cell , 71, 865-873]. In this paper it is shown, by using enhanced green fluorescent protein (EGFP) fusions, that other peptide sequences of DNA MTase are also involved in this targeting. The work focuses on a sequence, downstream of the reported targeting sequence (TS), which is homologous to the Polybromo-1 protein. This motif (designated as PBHD) is separated from the reported targeting sequence by a zinc-binding motif [Bestor , T. H. (1992) EMBO J , 11, 2611-2617]. Primed in situ extension using centromeric-specific primers was used to show that both the host DNA MTase and EGFP fusion proteins containing the targeting sequences were localized to centromeric, but not telomeric, regions during late S-phase and mitosis. Also found was that, in approximately 10% of the S-phase cells, the EGFP fusions did not co-localize with the centromeric regions. Mutants containing either, or both, of these targeting sequences could act as dominant negative mutants against the host DNA MTase. EGFP fusion proteins, containing the reported TS (aa 207-455), were targeted to centromeric regions throughout the mitotic stage which lead to the discovery of a similar behavior of the endogenous DNA MTase although the host MTase showed much less intense staining than in S-phase cells. The biological role of the centromeric localization of DNA MTase during mitosis is currently unknown.  相似文献   

10.
11.
12.
The host cell-specific factor 1 gene (hcf-1) of the baculovirus Autographa californica multiple nucleopolyhedrovirus is required for efficient virus growth in TN368 cells but is dispensable for virus replication in SF21 cells. However, the mechanism of action of hcf-1 is unknown. To begin to understand its function in virus replication we have investigated the expression and localization pattern of HCF-1 in infected cells. Analysis of virus-infected TN368 cells showed that hcf-1 is expressed at an early time in the virus life cycle, between 2 and 12 h postinfection, and localized the protein to punctate nuclear foci. Through coprecipitation experiments we have confirmed that HCF-1 self-associates into dimers or higher-order structures. We also found that overexpression of HCF-1 repressed expression from the hcf-1 promoter in transient reporter assays. Mutagenesis of cysteine residues within a putative RING finger domain in the amino acid sequence of HCF-1 abolished self-association activity and suggests that the RING domain may be involved in this protein-protein interaction. A different but overlapping set of cysteine residues were required for efficient gene repression activity. Functional analysis of HCF-1 mutants showed that the cysteine amino acids required for both self-association and gene repression activities of HCF-1 were also required for efficient late-gene expression and occlusion body formation in TN368 cells. Mutational analysis also identified essential charged and hydrophobic amino acids located between two of the essential cysteine residues. We propose that HCF-1 is a RING finger-containing protein whose activity requires HCF-1 self-association and gene repression activity.  相似文献   

13.
14.
The ORF3 protein of hepatitis E virus (HEV) is a multifunctional protein important for virus replication. The ORF3 proteins from human, swine, and avian strains of HEV contain a conserved PXXP amino acid motif, resembling either Src homology 3 (SH3) cell signaling interaction motifs or "late domains" involved in host cell interactions aiding in particle release. Using an avian strain of HEV, we determined the roles of the conserved prolines within the PREPSAPP motif in HEV replication and infectivity in Leghorn male hepatoma (LMH) chicken liver cells and in chickens. Each proline was changed to alanine to produce 8 avian HEV mutants containing single mutations (P64, P67, P70, and P71 to A), double mutations (P64/67A, P64/70A, and P67/70A), and triple mutations (P64/67/70A). The results showed that avian HEV mutants are replication competent in vitro, and none of the prolines in the PXXPXXPP motif are essential for infectivity in vivo; however, the second and third prolines appear to aid in fecal virus shedding, suggesting that the PSAP motif, but not the PREP motif, is involved in virus release. We also showed that the PSAP motif interacts with the host protein tumor suppressor gene 101 (TSG101) and that altering any proline within the PSAP motif disrupts this interaction. However, we showed that the ORF2 protein expressed in LMH cells is efficiently released from the cells in the absence of ORF3 and that coexpression of ORF2 and ORF3 did not act synergistically in this release, suggesting that another factor(s) such as ORF1 or viral genomic RNA may be necessary for proper particle release.  相似文献   

15.
We have mapped the mutation responsible for the temperature-sensitive (ts) phenotype of tsB821, a mutant of the baculovirus Autographa californica nuclear polyhedrosis virus (H. H. Lee and L. K. Miller, J. Virol. 31:240-252, 1979), to a single nucleotide which changes alanine 432 of the multifunctional regulatory protein IE-1 to a valine. Mapping was done with a combination of marker rescue and transient expression assays, hybrid gene construction by overlap PCR gene splicing, and nucleotide sequence analysis. Cells infected with tsB821 at high multiplicities of infection showed a spectrum of responses from severe cytopathic effects, including apoptosis, to a lack of obvious signs of infection. Protein synthesis in tsB821-infected cells at the restrictive temperature appeared similar to uninfected cell protein synthesis, but viral DNA replication and budded virus production were observed, albeit in a delayed manner. The dependence of early and late promoter activity on the wild-type IE-1 gene, ie-1, was observed in transient expression assays. However, the dependence of early promoter activity on ie-1 was strongest in the absence of other viral genes. Thus, other viral genes appear to be able to compensate, at least in part, for the lack, or low levels, of ie-1 in transient expression assays using early promoters. The mutant should prove useful in further defining the function(s) of IE-1.  相似文献   

16.
The zinc finger antiviral protein (ZAP) was recently shown to inhibit Moloney murine leukemia virus and Sindbis virus replication. We tested whether ZAP also acts against Ebola virus (EBOV) and Marburg virus (MARV). Antiviral effects were observed after infection of cells expressing the N-terminal part of ZAP fused to the product of the zeocin resistance gene (NZAP-Zeo) as well as after infection of cells inducibly expressing full-length ZAP. EBOV was inhibited by up to 4 log units, whereas MARV was inhibited between 1 to 2 log units. The activity of ZAP was dependent on the integrity of the second and fourth zinc finger motif, as tested with cell lines expressing NZAP-Zeo mutants. Heterologous expression of EBOV- and MARV-specific sequences fused to a reporter gene suggest that ZAP specifically targets L gene sequences. The activity of NZAP-Zeo in this assay was also dependent on the integrity of the second and fourth zinc finger motif. Time-course experiments with infectious EBOV showed that ZAP reduces the level of L mRNA before the level of genomic or antigenomic RNA is affected. Transient expression of ZAP decreased the activity of an EBOV replicon system by up to 95%. This inhibitory effect could be partially compensated for by overexpression of L protein. In conclusion, the data demonstrate that ZAP exhibits antiviral activity against filoviruses, presumably by decreasing the level of viral mRNA.  相似文献   

17.
18.
19.
20.
The geminivirus replication factor AL1 interacts with the plant retinoblastoma-related protein (pRBR) to modulate host gene expression. The AL1 protein of tomato golden mosaic virus (TGMV) binds to pRBR through an 80-amino-acid region that contains two highly predicted α-helices designated 3 and 4. Earlier studies suggested that the helix 4 motif, whose amino acid sequence is strongly conserved across geminivirus replication proteins, plays a role in pRBR binding. We generated a series of alanine substitutions across helix 4 of TGMV AL1 and examined their impact on pRBR binding using yeast two-hybrid assays. These experiments showed that several helix 4 residues are essential for efficient pRBR binding, with a critical residue being a leucine at position 148 in the middle of the motif. Various amino acid substitutions at leucine-148 indicated that both structural and side chain components contribute to pRBR binding. The replication proteins of the geminiviruses tomato yellow leaf curl virus and cabbage leaf curl virus (CaLCuV) also bound to pRBR in yeast dihybrid assays. Mutation of the leucine residue in helix 4 of CaLCuV AL1 reduced binding. Together, these results suggest that helix 4 and the conserved leucine residue are part of a pRBR-binding interface in begomovirus replication proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号