首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent deluge of new RNA structures, including complete atomic-resolution views of both subunits of the ribosome, has on the one hand literally overwhelmed our individual abilities to comprehend the diversity of RNA structure, and on the other hand presented us with new opportunities for comprehensive use of RNA sequences for comparative genetic, evolutionary and phylogenetic studies. Two concepts are key to understanding RNA structure: hierarchical organization of global structure and isostericity of local interactions. Global structure changes extremely slowly, as it relies on conserved long-range tertiary interactions. Tertiary RNA-RNA and quaternary RNA-protein interactions are mediated by RNA motifs, defined as recurrent and ordered arrays of non-Watson-Crick base-pairs. A single RNA motif comprises a family of sequences, all of which can fold into the same three-dimensional structure and can mediate the same interaction(s). The chemistry and geometry of base pairing constrain the evolution of motifs in such a way that random mutations that occur within motifs are accepted or rejected insofar as they can mediate a similar ordered array of interactions. The steps involved in the analysis and annotation of RNA motifs in 3D structures are: (a) decomposition of each motif into non-Watson-Crick base-pairs; (b) geometric classification of each basepair; (c) identification of isosteric substitutions for each basepair by comparison to isostericity matrices; (d) alignment of homologous sequences using the isostericity matrices to identify corresponding positions in the crystal structure; (e) acceptance or rejection of the null hypothesis that the motif is conserved.  相似文献   

2.
Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.  相似文献   

3.
4.
Geometric nomenclature and classification of RNA base pairs   总被引:26,自引:9,他引:17       下载免费PDF全文
  相似文献   

5.
6.
The traditional way to infer RNA secondary structure involves an iterative process of alignment and evaluation of covariation statistics between all positions possibly involved in basepairing. Watson-Crick basepairs typically show covariations that score well when examples of two or more possible basepairs occur. This is not necessarily the case for non-Watson-Crick basepairing geometries. For example, for sheared (trans Hoogsteen/Sugar edge) pairs, one base is highly conserved (always A or mostly A with some C or U), while the other can vary (G or A and sometimes C and U as well). RNA motifs consist of ordered, stacked arrays of non-Watson-Crick basepairs that in the secondary structure representation form hairpin or internal loops, multi-stem junctions, and even pseudoknots. Although RNA motifs occur recurrently and contribute in a modular fashion to RNA architecture, it is usually not apparent which bases interact and whether it is by edge-to-edge H-bonding or solely by stacking interactions. Using a modular sequence-analysis approach, recurrent motifs related to the sarcin-ricin loop of 23S RNA and to loop E from 5S RNA were predicted in universally conserved regions of the large ribosomal RNAs (16S- and 23S-like) before the publication of high-resolution, atomic-level structures of representative examples of 16S and 23S rRNA molecules in their native contexts. This provides the opportunity to evaluate the predictive power of motif-level sequence analysis, with the goal of automating the process for predicting RNA motifs in genomic sequences. The process of inferring structure from sequence by constructing accurate alignments is a circular one. The crucial link that allows a productive iteration of motif modeling and realignment is the comparison of the sequence variations for each putative pair with the corresponding isostericity matrix to determine which basepairs are consistent both with the sequence and the geometrical data.  相似文献   

7.
Cruz JA  Westhof E 《Nature methods》2011,8(6):513-521
Structural RNA modules, sets of ordered non-Watson-Crick base pairs embedded between Watson-Crick pairs, have central roles as architectural organizers and sites of ligand binding in RNA molecules, and are recurrently observed in RNA families throughout the phylogeny. Here we describe a computational tool, RNA three-dimensional (3D) modules detection, or RMDetect, for identifying known 3D structural modules in single and multiple RNA sequences in the absence of any other information. Currently, four modules can be searched for: G-bulge loop, kink-turn, C-loop and tandem-GA loop. In control test sequences we found all of the known modules with a false discovery rate of 0.23. Scanning through 1,444 publicly available alignments, we identified 21 yet unreported modules and 141 known modules. RMDetect can be used to refine RNA 2D structure, assemble RNA 3D models, and search and annotate structured RNAs in genomic data.  相似文献   

8.
The SECIS element is an RNA hairpin in the 3'UTR of selenoprotein mRNAs required for decoding UGA selenocysteine codons. Our experimentally derived 2D structure model for the SECIS RNA revealed the conservation of four consecutive non-Watson-Crick base pairs, with a central G.A/A.G tandem. The present study was dedicated to gaining insight into the role of this quartet of base pairs. The effects of mutations introduced into the SECIS quartet of the glutathione peroxidase (GPx) cDNA, an enzyme with selenocysteine in its active center, were reported in vivo by the GPx activity. The detrimental consequence of an all-Watson-Crick mutant quartet disclosed the paramount importance of the non-Watson-Crick base pairs for GPx activity. Next, structure probing established that base pair changes in the central G.A/A.G tandem, predicted by the model to be structurally unfavorable, effectively led to local opening of the helix at the quartet. A concomitant abolition of GPx activity was observed, arising from translational impairment of full-length GPx. In contrast, an isosteric base pair replacement in the tandem did not affect base pairing in the quartet, leading to an almost wt GPx activity. Collectively, the data provided conclusive evidence for the functional relevance of these non-Watson-Crick base pairs in vivo, thus identifying a noncanonical RNA motif crucial to SECIS function in mediating selenoprotein translation. Within the quartet, the prominent requirement for the central G.A/A.G tandem is highlighted, our previous structural model and the mutagenesis data presented here strongly arguing in favor of a sheared arrangement for the G.A base pairs. The SECIS RNA is therefore another member to be added to the growing list of RNAs containing building blocks of non-Watson-Crick base pairs, required for structure and/or function.  相似文献   

9.
A significant fraction of the bases in a folded, structured RNA molecule participate in noncanonical base pairing interactions, often in the context of internal loops or multi-helix junction loops. The appearance of each new high-resolution RNA structure provides welcome data to guide efforts to understand and predict RNA 3D structure, especially when the RNA in question is a functionally conserved molecule. The recent publication of the crystal structure of the "Loop E" region of bacterial 5S ribosomal RNA is such an event [Correll CC, Freeborn B, Moore PB, Steitz TA, 1997, Cell 91:705-712]. In addition to providing more examples of already established noncanonical base pairs, such as purine-purine sheared pairings, trans-Hoogsteen UA, and GU wobble pairs, the structure provides the first high-resolution views of two new purine-purine pairings and a new GU pairing. The goal of the present analysis is to expand the capabilities of both chemical probing and phylogenetic analysis to predict with greater accuracy the structures of RNA molecules. First, in light of existing chemical probing data, we investigate what lessons could be learned regarding the interpretation of this widely used method of RNA structure probing. Then we analyze the 3D structure with reference to molecular phylogeny data (assuming conservation of function) to discover what alternative base pairings are geometrically compatible with the structure. The comparisons between previous modeling efforts and crystal structures show that the intricate involvements of ions and water molecules in the maintenance of non-Watson-Crick pairs render the process of correctly identifying the interacting sites in such pairs treacherous, except in cases of trans-Hoogsteen A/U or sheared A/G pairs for the adenine N1 site. The phylogenetic analysis identifies A/A, A/C, A/U and C/A, C/C, and C/U pairings isosteric with sheared A/G, as well as A/A and A/C pairings isosteric with both G/U and G/G bifurcated pairings. Thus, each non-Watson-Crick pair could be characterized by a phylogenetic signature of variations between isosteric-like pairings. In addition to the conservative changes, which form a dictionary of pairings isosterically compatible with those observed in the crystal structure, concerted changes involving several base pairs also occur. The latter covariations may indicate transitions between related but distinctive motifs within the loop E of 5S ribosomal RNA.  相似文献   

10.
Explicit solvent and counterion molecular dynamics simulations have been carried out for a total of >80 ns on the bacterial and spinach chloroplast 5S rRNA Loop E motifs. The Loop E sequences form unique duplex architectures composed of seven consecutive non-Watson-Crick basepairs. The starting structure of spinach chloroplast Loop E was modeled using isostericity principles, and the simulations refined the geometries of the three non-Watson-Crick basepairs that differ from the consensus bacterial sequence. The deep groove of Loop E motifs provides unique sites for cation binding. Binding of Mg(2+) rigidifies Loop E and stabilizes its major groove at an intermediate width. In the absence of Mg(2+), the Loop E motifs show an unprecedented degree of inner-shell binding of monovalent cations that, in contrast to Mg(2+), penetrate into the most negative regions inside the deep groove. The spinach chloroplast Loop E shows a marked tendency to compress its deep groove compared with the bacterial consensus. Structures with a narrow deep groove essentially collapse around a string of Na(+) cations with long coordination times. The Loop E non-Watson-Crick basepairing is complemented by highly specific hydration sites ranging from water bridges to hydration pockets hosting 2 to 3 long-residing waters. The ordered hydration is intimately connected with RNA local conformational variations.  相似文献   

11.
The existence and identity of non-Watson-Crick base pairs (bps) within RNA bulges, internal loops, and hairpin loops cannot reliably be predicted by existing algorithms. We have developed the Isfold (Isosteric Folding) program as a tool to examine patterns of nucleotide substitutions from sequence alignments or mutation experiments and identify plausible bp interactions. We infer these interactions based on the observation that each non-Watson-Crick bp has a signature pattern of isosteric substitutions where mutations can be made that preserve the 3D structure. Isfold produces a dynamic representation of predicted bps within defined motifs in order of their probabilities. The software was developed under Windows XP, and is capable of running on PC and MAC with Matlab 7.1 (SP3) or higher. A PC stand-alone version that does not require Matlab also is available. This software and a user manual are freely available at www.ucsf.edu/frankel/isfold.  相似文献   

12.
The DNA microarray technology is a well-established and widely used technology although it has several drawbacks. The accurate molecular recognition of the canonical nucleobases of probe and target is the basis for reliable results obtained from microarray hybridization experiments. However, the great flexibility of base pairs within the DNA molecule allows the formation of various secondary structures incorporating Watson-Crick base pairs as well as non-canonical base pair motifs, thus becoming a source of inaccuracy and inconsistence. The first part of this report provides an overview of unusual base pair motifs formed during molecular DNA interaction in solution highlighting selected secondary structures employing non-Watson-Crick base pairs. The same mispairing phenomena obtained in solution are expected to occur for immobilized probe molecules as well as for target oligonucleotides employed in microarray hybridization experiments the effect of base pairing and oligonucleotide composition on hybridization is considered. The incorporation of nucleoside derivatives as close shape mimics of the four canonical nucleosides into the probe and target oligonucleotides is discussed as a chemical tool to resolve unwanted mispairing. The second part focuses non-Watson-Crick base pairing during hybridization performed on microarrays. This is exemplified for the unusual stable dG.dA base pair.  相似文献   

13.
RNA is now known to possess various structural, regulatory and enzymatic functions for survival of cellular organisms. Functional RNA structures are generally created by three-dimensional organization of small structural motifs, formed by base pairing between self-complementary sequences from different parts of the RNA chain. In addition to the canonical Watson–Crick or wobble base pairs, several non-canonical base pairs are found to be crucial to the structural organization of RNA molecules. They appear within different structural motifs and are found to stabilize the molecule through long-range intra-molecular interactions between basic structural motifs like double helices and loops. These base pairs also impart functional variation to the minor groove of A-form RNA helices, thus forming anchoring site for metabolites and ligands. Non-canonical base pairs are formed by edge-to-edge hydrogen bonding interactions between the bases. A large number of theoretical studies have been done to detect and analyze these non-canonical base pairs within crystal or NMR derived structures of different functional RNA. Theoretical studies of these isolated base pairs using ab initio quantum chemical methods as well as molecular dynamics simulations of larger fragments have also established that many of these non-canonical base pairs are as stable as the canonical Watson–Crick base pairs. This review focuses on the various structural aspects of non-canonical base pairs in the organization of RNA molecules and the possible applications of these base pairs in predicting RNA structures with more accuracy.  相似文献   

14.
Single crystal x-ray diffraction methods have been used to characterize numerous oligonucleotide structures, providing valuable information on the fine structure of DNA, oligonucleotide hydration, interactions with small molecule ligands and proteins. There has been a particular focus on nonstandard base associations and a number of groups have sought to characterize different non-Watson-Crick base pairs to further the understanding of their influence on the structure of duplex DNA and RNA, and to investigate which structural features might be utilized by enzymes in recognition and repair of these errors in DNA. Bases that have been chemically damaged by mutagenic or carcinogenic agents have distinctive modified hydrogen-bonding patterns and these have been investigated. The structure determination of a series of nonduplex DNA structures including examples of a triplex, quadruplexes, and a novel DNA loop have recently been published. In this article we survey the structures of a series of non-Watson-Crick base associations in duplex DNA and RNA. We show how nonstandard base pairs, base triads, and tetrads play an important role in stabilizing nonduplex structures. © 1997 John Wiley & Sons, Inc. Biopoly 44: 91–103, 1997  相似文献   

15.
Abstract

The existence and identity of non-Watson-Crick base pairs (bps) within RNA bulges, internal loops, and hairpin loops cannot reliably be predicted by existing algorithms. We have developed the Isfold (Isosteric Folding) program as a tool to examine patterns of nucleotide substitutions from sequence alignments or mutation experiments and identify plausible bp interactions. We infer these interactions based on the observation that each non-Watson-Crick bp has a signature pattern of isosteric substitutions where mutations can be made that preserve the 3D structure. Isfold produces a dynamic representation of predicted bps within defined motifs in order of their probabilities. The software was developed under Windows XP, and is capable of running on PC and MAC with Matlab 7.1 (SP3) or higher. A PC standalone version that does not require Matlab also is available. This software and a user manual are freely available at www.ucsf.edu/frankel/isfold.  相似文献   

16.
Wang Y  Zhong X  Itaya A  Ding B 《Journal of virology》2007,81(4):2074-2077
RNA motifs comprising nucleotides that interact through non-Watson-Crick base pairing play critical roles in RNA functions, often by serving as the sites for RNA-RNA, RNA-protein, or RNA small ligand interactions. The structures of viral and viroid RNA motifs are studied commonly by in vitro, computational, and mutagenesis approaches. Demonstration of the in vivo existence of a motif will help establish its biological significance and promote mechanistic studies on its functions. By using UV cross-linking and primer extension, we have obtained direct evidence for the in vivo existence of the loop E motif of Potato spindle tuber viroid. We present our findings and discuss their biological implications.  相似文献   

17.
In eukaryotes, co-translational insertion of selenocysteine into selenoproteins necessitates the participation of the selenocysteine insertion sequence (SECIS), an element lying in the 3'-untranslated region of selenoprotein mRNAs. We report a detailed experimental study of the secondary structures of the SECIS elements of three selenoprotein mRNAs, the rat and human type I iodothyronine deiodinase (5'DI) and rat glutathione peroxidase (GPx). Based on RNase and chemical probing, a new secondary structure model is established. It is characterized by a stem-loop structure, comprising two helices (I and II) separated by an internal loop, with an apical loop surmounting helix II. Sequence comparisons of 20 SECIS elements, arising from 2 5'DI, 13 GPx, 2 selenoprotein P, and 1 selenoprotein W mRNAs, confirm the secondary structure model. The most striking finding of the experimental study concerns a set of conserved sequences in helix II that interact to form a novel RNA structural motif consisting of a quartet composed of non-Watson-Crick base pairs 5'UGAY3': 5'UGAU3'. The potential for forming the quartet is preserved in 15 SECIS elements, but three consecutive non-Watson-Crick base pairs can nevertheless form in the other five SECIS, the central G.A tandem being invariant in all cases. A 3D model, derived by computer modeling with the use of the solution data, suggests that the base pairing interactions in the G.A tandem are of the type found in GNRA loops. The 3D model displays the quartet lying in an accessible position at the foot of helix II, which is bent at the internal loop, suggesting that the non-Watson-Crick base pair arrangement provides an unusual pattern of chemical groups for putative ligand interaction.  相似文献   

18.
Relative positions of bases to bases in a crystal structure of ribosome were analyzed extensively. It was found that there is no clear relation between bases apart more than 15 A and, thus, the relative location of bases can be analyzed within 15 A of the reference bases. As for base pairing, major positioning was found to be due to the Watson-Crick type base pairs. Some other positions corresponding to non-Watson-Crick type base pairs were also found in some extents. As for base-base stacking, it was observed that the bases stacked to adenine base are dispersive. It was found that less non-Watson-Crick base pairs was found close to the protein binding site, suggesting that the protein components have a tendency to bind to the regular stem structures. The database of relative location of bases must be useful for improvement of structural determination and structural modeling systems.  相似文献   

19.
The hydration patterns around the RNA Watson-Crick and non-Watson-Crick base pairs in crystals are analyzed and described. The results indicate that (i) the base pair hydration is mostly "in-plane"; (ii) eight hydration sites surround the Watson-Crick G-C and A-U base pairs, with five in the deep and three in the shallow groove, an observation which extends the characteristic isostericity of Watson-Crick pairs; (iii) while the hydration around G-C base pairs is well defined, the hydration around A-U base pairs is more diffuse; (iv) the hydration sites close to the phosphate groups are the best defined and the most recurrent ones; (v) a string of water molecules links the two shallow groove 2'-hydroxyl groups, and (vi) the water molecules fit into notches, the size and accessibility of which are almost as important as the number and strength of the hydrophilic groups lining the cavity. Residence times of water molecules at specific hydration sites, inferred from molecular dynamics simulations, are discussed in the light of present data.  相似文献   

20.
Protein enzymes often use ionizable side chains, such as histidine, for general acid-base catalysis because the imidazole pK(a) is near neutral pH. RNA enzymes, on the other hand, are comprised of nucleotides which do not have apparent pK(a) values near neutral pH. Nevertheless, it has been recently shown that cytidine and adenine protonation can play an important role in both nucleic acid structure and catalysis. We have employed heteronuclear NMR methods to determine the pK(a) values and time scales of chemical exchanges associated with adenine protonation within the catalytically essential B domain of the hairpin ribozyme. The large, adenine-rich internal loop of the B domain allows us to determine adenine pK(a) values for a variety of non-Watson-Crick base pairs. We find that adenines within the internal loop have pK(a) values ranging from 4.8 to 5.8, significantly higher than the free mononucleotide pK(a) of 3. 5. Adenine protonation results in potential charge stabilization, hydrogen bond formation, and stacking interactions that are expected to stabilize the internal loop structure at low pH. Fast proton exchange times of 10-50 micros were determined for the well-resolved adenines. These results suggest that shifted pK(a) values may be a common feature of adenines in non-Watson-Crick base pairs, and identify two adenines which may participate in hairpin ribozyme active site chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号