首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the human LIS1 gene cause type I lissencephaly, a severe brain developmental disease involving gross disorganization of cortical neurons. In lower eukaryotes, LIS1 participates in cytoplasmic dynein-mediated nuclear migration. We previously reported that mammalian LIS1 functions in cell division and coimmunoprecipitates with cytoplasmic dynein and dynactin. We also localized LIS1 to the cell cortex and kinetochores of mitotic cells, known sites of dynein action. We now find that the COOH-terminal WD repeat region of LIS1 is sufficient for kinetochore targeting. Overexpression of this domain or full-length LIS1 displaces CLIP-170 from this site without affecting dynein and other kinetochore markers. The NH2-terminal self-association domain of LIS1 displaces endogenous LIS1 from the kinetochore, with no effect on CLIP-170, dynein, and dynactin. Displacement of the latter proteins by dynamitin overexpression, however, removes LIS1, suggesting that LIS1 binds to the kinetochore through the motor protein complexes and may interact with them directly. We find that of 12 distinct dynein and dynactin subunits, the dynein heavy and intermediate chains, as well as dynamitin, interact with the WD repeat region of LIS1 in coexpression/coimmunoprecipitation and two-hybrid assays. Within the heavy chain, interactions are with the first AAA repeat, a site strongly implicated in motor function, and the NH2-terminal cargo-binding region. Together, our data suggest a novel role for LIS1 in mediating CLIP-170-dynein interactions and in coordinating dynein cargo-binding and motor activities.  相似文献   

2.
Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150(Glued) are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH(2) terminus of p150(Glued) binds directly to the COOH terminus of CLIP-170 through its second metal-binding motif. p150(Glued) and LIS1, a dynein-associating protein, compete for the interaction with the CLIP-170 COOH terminus, suggesting that LIS1 can act to release dynactin from the MT tips. We also show that the NH(2)-terminal part of CLIP-170 itself associates with the CLIP-170 COOH terminus through its first metal-binding motif. By using scanning force microscopy and fluorescence resonance energy transfer-based experiments we provide evidence for an intramolecular interaction between the NH(2) and COOH termini of CLIP-170. This interaction interferes with the binding of the CLIP-170 to MTs. We propose that conformational changes in CLIP-170 are important for binding to dynactin, LIS1, and the MT tips.  相似文献   

3.
CLIP-170 is a "cytoplasmic linker protein" implicated in endosome-microtubule interactions and in control of microtubule dynamics. CLIP-170 localizes dynamically to growing microtubule plus ends, colocalizing with the dynein activator dynactin and the APC-binding protein EB1. This shared "plus-end tracking" behavior suggests that CLIP-170 might interact with dynactin and/or EB1. We have used site-specific mutagenesis of CLIP-170 and a transfection/colocalization assay to address this question in mammalian tissue culture cells. Our results indicate that CLIP-170 interacts, directly or indirectly, with both dynactin and EB1. We find that the CLIP-170/dynactin interaction is mediated by the second metal binding motif of the CLIP-170 tail. In contrast, the CLIP-170/EB1 interaction requires neither metal binding motif. In addition, our experiments suggest that the CLIP-170/dynactin interaction occurs via the shoulder/sidearm subcomplex of dynactin and can occur in the cytosol (i.e., it does not require microtubule binding). These results have implications for the targeting of both dynactin and EB1 to microtubule plus ends. Our data suggest that the CLIP-170/dynactin interaction can target dynactin complex to microtubule plus ends, although dynactin likely also targets MT plus ends directly via the microtubule binding motif of the p150(Glued) subunit. We find that CLIP-170 mutants alter p150(Glued) localization without affecting EB1, indicating that EB1 can target microtubule plus ends independently of dynactin.  相似文献   

4.
NudE and NudEL are related proteins that interact with cytoplasmic dynein and LIS1. Their functional relationship and involvement in LIS1 and dynein regulation are not completely understood. We find that NudE and NudEL each localize to mitotic kinetochores before dynein, dynactin, ZW10, and LIS1 and exhibit additional temporal and spatial differences in distribution from the motor protein. Inhibition of NudE and NudEL caused metaphase arrest with misoriented chromosomes and defective microtubule attachment. Dynein and dynactin were both displaced from kinetochores by the injection of an anti-NudE/NudEL antibody. Dynein but not dynactin interacted with NudE surprisingly through the dynein intermediate and light chains but not the motor domain. Together, these results identify a common function for NudE and NudEL in mitotic progression and identify an alternative mechanism for dynein recruitment to and regulation at kinetochores.  相似文献   

5.
CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein and dynactin at kinetochores, but not polar regions, during mitosis. Like dynein and dynactin, a fraction of the total CLIP-170 pool can be detected on kinetochores of unattached chromosomes but not on those that have become aligned at the metaphase plate. The COOH-terminal domain of CLIP-170, when transiently overexpressed, localizes to kinetochores and causes endogenous full-length CLIP-170 to be lost from the kinetochores, resulting in a delay in prometaphase. Overexpression of the dynactin subunit, dynamitin, strongly reduces the amount of CLIP-170 at kinetochores suggesting that CLIP-170 targeting may involve the dynein/dynactin complex. Thus, CLIP-170 may be a linker for cargo in mitosis as well as interphase. However, dynein and dynactin staining at kinetochores are unaffected by this treatment and further overexpression studies indicate that neither CLIP-170 nor dynein and dynactin are required for the formation of kinetochore fibers. Nevertheless, these results strongly suggest that CLIP-170 contributes in some way to kinetochore function in vivo.Microtubules (MTs)1 in vertebrate somatic cells are involved in intracellular transport and distribution of membranous organelles. Fundamental to this role are their tightly controlled, polarized organization, and unusual dynamic properties (Hirokawa, 1994) and their interaction with a complex set of MT-based motor proteins (Hirokawa, 1996; Sheetz, 1996; Goodson et al., 1997). During mitosis, they contribute to the motility of centrosomes, the construction of spindle poles (Karsenti et al., 1996; Merdes and Cleveland, 1997), and the dynamic movements of kinetochores (Rieder and Salmon, 1994) and chromosome arms (Barton and Goldstein, 1996; Vernos and Karsenti, 1996). The motor protein cytoplasmic dynein, drives the transport toward MT minus-ends of a variety of subcellular organelles (Schnapp and Reese, 1989; Schroer et al., 1989; Holzbaur and Vallee, 1994). Dynactin is a molecular complex originally identified as being essential for dynein-mediated movement of salt-washed vesicles in vitro (reviewed in Schroer, 1996; Schroer and Sheetz, 1991). Genetic studies in fungi, yeast, and flies have shown that the two complexes function together to drive nuclear migration, spindle and nuclear positioning and to permit proper neuronal development (Eshel et al., 1993; Clark and Meyer, 1994; Muhua et al., 1994; Plamann et al., 1994; McGrail et al., 1995; Karsenti et al., 1996). Biochemical studies suggest a direct interaction between certain subunits of dynein and dynactin (Karki and Holzbaur, 1995; Vaughan and Vallee, 1995). In vivo, the two molecules may bind one another transiently, since they have not been isolated as a stable complex.There is good evidence indicating that the dynein/dynactin complex, together with other motors (Eg5, and a minus-end oriented kinesin-related protein) and a structural protein (NuMa), drive the focusing of free microtubule ends into mitotic spindle poles (Merdes and Cleveland, 1997; Waters and Salmon, 1997). A trimolecular complex composed of NuMa and dynein/dynactin may be crucial in this process in both acentriolar (Merdes et al., 1996), and centriolar spindles (Gaglio et al., 1997). A number of findings also indicate that the combined actions of dynein and dynactin at the kinetochore contribute to chromosome alignment in vertebrate somatic cells. First, the initial interaction between polar spindle MTs and kinetochores seems to involve a tangential capture event (Merdes and De Mey, 1990; Rieder and Alexander, 1990) which is followed by a poleward gliding along the surface lattice of the MT (Hayden et al., 1990). Both in vivo and in vitro (Hyman and Mitchison, 1991) this gliding movement appears similar to the dynein-mediated retrograde transport of vesicular organelles along MTs. Consistent with this is the finding that both dynein (Pfarr et al., 1990; Steuer et al., 1990) and its activator, dynactin (Echeverri et al., 1996), are present at prometaphase kinetochores. Overexpression of dynamitin, a 50-kD subunit of the dynactin complex, results in the partial disruption of the dynactin complex and in the loss, from kinetochores, of dynein, as well as dynactin. Therefore, it has been proposed that dynactin mediates the association of dynein with kinetochores. Abnormal spindles with poorly focused poles are observed and the cells become arrested in pseudoprometaphase (Echeverri et al., 1996). Despite these findings, rigorous proof for a role of the dynein motor complex in kinetochore motility is still lacking, and its role may differ between lower and higher eucaryotes, and between mitosis and meiosis.CLIP-170 (Rickard and Kreis, 1996) is needed for in vitro binding of endocytic transport vesicles to MTs (Pierre et al., 1992). It is a nonmotor MT-binding protein that accumulates preferentially in the vicinity of MT plus ends and on early endosomes and endocytic transport vesicles in nondividing cells (Rickard and Kreis, 1990; Pierre et al., 1992). Like many MT-binding proteins, CLIP-170 is a homodimer whose NH2-terminal head domains and COOH-terminal tail domains flank a central α-helical coiled-coil domain. The binding of CLIP-170 to MTs involves a 57–amino acid sequence present twice in the head domain (Pierre et al., 1992) and is regulated by phosphorylation (Rickard and Kreis, 1991). The COOH-terminal domain has been proposed to participate in targeting to endocytic membranes (Pierre et al., 1994). The fact that the latter move predominantly toward microtubule minus ends in a process most likely mediated by cytoplasmic dynein and dynactin (Aniento and Gruenberg, 1995), suggests that CLIP-170 may act in concert with this motor complex, and may be subject to regulated interactions with one or more dynactin or dynein subunits at the vesicle membrane.Here we report that during mitosis, CLIP-170 codistributes with dynein and dynactin at kinetochores, but not spindle poles. Evidence is presented that the COOH-terminal domain of CLIP-170 is responsible for its kinetochore targeting, and that this may be mediated by the complex of dynein and dynactin. The effects on mitotic progression of overexpression of wild type and several deletion mutants of CLIP-170 provide evidence for the involvement of CLIP-170 in kinetochore function early in mitosis. We also present in vivo evidence that neither CLIP-170 nor the complex of dynein and dynactin are required for formation of kinetochore fibers.  相似文献   

6.
CLIP-170 is a microtubule 'plus end tracking' protein involved in several microtubule-dependent processes in interphase. At the onset of mitosis, CLIP-170 localizes to kinetochores, but at metaphase, it is no longer detectable at kinetochores. Although RNA interference (RNAi) experiments have suggested an essential role for CLIP-170 during mitosis, the molecular function of CLIP-170 in mitosis has not yet been revealed. Here, we used a combination of high-resolution microscopy and RNAi-mediated depletion to study the function of CLIP-170 in mitosis. We found that CLIP-170 dynamically localizes to the outer most part of unattached kinetochores and to the ends of growing microtubules. In addition, we provide evidence that a pool of CLIP-170 is transported along kinetochore-microtubules by the dynein/dynactin complex. Interference with CLIP-170 expression results in defective chromosome congression and diminished kinetochore-microtubule attachments, but does not detectibly affect microtubule dynamics or kinetochore-microtubule stability. Taken together, our results indicate that CLIP-170 facilitates the formation of kinetochore-microtubule attachments, possibly through direct capture of microtubules at the kinetochore.  相似文献   

7.
BACKGROUND: During anaphase in budding yeast, dynein inserts the mitotic spindle across the neck between mother and daughter cells. The mechanism of dynein-dependent spindle positioning is thought to involve recruitment of dynein to the cell cortex followed by capture of astral microtubules (aMTs). RESULTS: We report the native-level localization of the dynein heavy chain and characterize the effects of mutations in dynein regulators on its intracellular distribution. Budding yeast dynein displays discontinuous localization along aMTs, with enrichment at the spindle pole body and aMT plus ends. Loss of Bik1p (CLIP-170), the cargo binding domain of Bik1p, or Pac1p (LIS1) resulted in diminished targeting of dynein to aMTs. By contrast, loss of dynactin or a mutation in the second P loop domain of dynein resulted in an accumulation of dynein on the plus ends of aMTs. Unexpectedly, loss of Num1p, a proposed dynein cortical anchor, also resulted in selective accumulation of dynein on the plus ends of anaphase aMTs. CONCLUSIONS: We propose that, rather than first being recruited to the cell cortex, dynein is delivered to the cortex on the plus ends of polymerizing aMTs. Dynein may then undergo Num1p-dependent activation and transfer to the region of cortical contact. Based on the similar effects of loss of Num1p and loss of dynactin on dynein localization, we suggest that Num1p might also enhance dynein motor activity or processivity, perhaps by clustering dynein motors.  相似文献   

8.
In animal cells, microtubules (MTs) of the mitotic apparatus (MA) communicate with the cell cortex to stimulate cytokinesis; however, the molecular nature of this stimulus remains elusive . A signal for cytokinesis likely involves the MT plus end binding family of proteins, which includes EB1, p150glued, APC, LIS1, and CLIP-170. These proteins modulate MT dynamics and facilitate interactions between growing MTs and their intracellular targets, including kinetochores, organelles, and the cell cortex . The dynein-dynactin complex mediates many of these microtubule capture events . We report that EB1 and p150glued interactions are required for stimulation of cytokinesis in dividing sea urchin eggs. Injected antibodies against EB1 or p150glued suppressed furrow ingression but did not prevent elongation of anaphase astral MTs toward the cortex, suggesting that EB1 and dynactin are both required for communication between the MA and the cortex. Targeted disruption of the interaction between EB1 and p150glued suppressed anaphase astral MT elongation and resulted in a delay of cytokinesis that could not be overcome by manipulation of the asters toward the cortex. We conclude that EB1 and dynactin participate in stimulation of the cleavage furrow, and their interaction promotes elongation of astral MTs at anaphase onset.  相似文献   

9.
The flow of material from peripheral, early endosomes to late endosomes requires microtubules and is thought to be facilitated by the minus end-directed motor cytoplasmic dynein and its activator dynactin. The microtubule-binding protein CLIP-170 may also play a role by providing an early link to endosomes. Here, we show that perturbation of dynactin function in vivo affects endosome dynamics and trafficking. Endosome movement, which is normally bidirectional, is completely inhibited. Receptor-mediated uptake and recycling occur normally, but cells are less susceptible to infection by enveloped viruses that require delivery to late endosomes, and they show reduced accumulation of lysosomally targeted probes. Dynactin colocalizes at microtubule plus ends with CLIP-170 in a way that depends on CLIP-170's putative cargo-binding domain. Overexpression studies using p150(Glued), the microtubule-binding subunit of dynactin, and mutant and wild-type forms of CLIP-170 indicate that CLIP-170 recruits dynactin to microtubule ends. These data suggest a new model for the formation of motile complexes of endosomes and microtubules early in the endocytic pathway.  相似文献   

10.
Rough Deal (Rod) and Zw10 are components of a complex required for the metazoan metaphase checkpoint and for recruitment of dynein/dynactin to the kinetochore. The Rod complex, like most classical metaphase checkpoint components, forms part of the outer domain of unattached kinetochores. Here we analyze the dynamics of a GFP-Rod chimera in living syncytial Drosophila embryos. Uniquely among checkpoint proteins, GFP-Rod robustly streams from kinetochores along microtubules, from the time of chromosome attachment until anaphase onset. Prometaphase and metaphase kinetochores continuously recruit new Rod, thus feeding the current. Rod flux from kinetochores appears to require biorientation but not tension because it continues in the presence of taxol. As with Mad2, kinetochore- and spindle-associated Rod rapidly turns over with free cytosolic Rod, both during normal mitosis and after colchicine treatment, with a t1/2 of 25-45 s. GFP-Rod coimmunoprecipitates with dynein/dynactin, and in the absence of microtubules both Rod and dynactin accumulate on kinetochores. Nevertheless, Rod and dynein/dynactin behavior are distinguishable. We propose that the Rod complex is a major component of the fibrous corona and that the recruitment of Rod during metaphase is required to replenish kinetochore dynein after checkpoint conditions have been satisfied but before anaphase onset.  相似文献   

11.
Mutations in the LIS1 gene cause gross histological disorganization of the developing human brain, resulting in a brain surface that is almost smooth. Here we show that LIS1 protein co-immunoprecipitates with cytoplasmic dynein and dynactin, and localizes to the cell cortex and to mitotic kinetochores, which are known sites for binding of cytoplasmic dynein. Overexpression of LIS1 in cultured mammalian cells interferes with mitotic progression and leads to spindle misorientation. Injection of anti-LIS1 antibody interferes with attachment of chromosomes to the metaphase plate, and leads to chromosome loss. We conclude that LIS1 participates in a subset of dynein functions, and may regulate the division of neuronal progenitor cells in the developing brain.  相似文献   

12.
The intimate link between microtubule (MT) organization and the components of the secretory pathway has suggested that MT-based motility is an essential component of vesicular membrane transport and membrane polarization. The molecular details of these processes are still under investigation; however, a novel class of MT plus end-binding proteins shed new light on transport between the endoplasmic reticulum (ER) and Golgi apparatus. The dynactin complex, an initial member of this family, shares localization and live-cell imaging phenotypes with other plus end-binding proteins such as CLIP-170 and EB1. In addition, dynactin has been shown to mediate the binding of ER-Golgi transport vesicles to MTs through a regulated MT-binding motif in p150(Glued). Whereas the plus end-binding activity of CLIP-170 and EB1 has been linked to the regulation of dynamic instability, the plus end binding of dynactin is implicated in a search-capture mechanism for dynein-dependent cargoes. An examination of dynactin's role in ER-Golgi transport suggests that plus end binding could be a reflection of fundamental membrane transport mechanisms.  相似文献   

13.
Proteins in the cytoplasmic dynein pathway accumulate at the microtubule plus end, giving the appearance of comets when observed in live cells. The targeting mechanism for NUDF (LIS1/Pac1) of Aspergillus nidulans, a key component of the dynein pathway, has not been clear. Previous studies have demonstrated physical interactions of NUDF/LIS1/Pac1 with both NUDE/NUDEL/Ndl1 and CLIP-170/Bik1. Here, we have identified the A. nidulans CLIP-170 homologue, CLIPA. The clipA deletion did not cause an obvious nuclear distribution phenotype but affected cytoplasmic microtubules in an unexpected manner. Although more microtubules failed to undergo long-range growth toward the hyphal tip at 32 degrees C, those that reached the hyphal tip were less likely to undergo catastrophe. Thus, in addition to acting as a growth-promoting factor, CLIPA also promotes microtubule dynamics. In the absence of CLIPA, green fluorescent protein-labeled cytoplasmic dynein heavy chain, p150(Glued) dynactin, and NUDF were all seen as plus-end comets at 32 degrees C. However, under the same conditions, deletion of both clipA and nudE almost completely abolished NUDF comets, although nudE deletion itself did not cause a dramatic change in NUDF localization. Based on these results, we suggest that CLIPA and NUDE both recruit NUDF to the microtubule plus end. The plus-end localization of CLIPA itself seems to be regulated by different mechanisms under different physiological conditions. Although the KipA kinesin (Kip2/Tea2 homologue) did not affect plus-end localization of CLIPA at 32 degrees C, it was required for enhancing plus-end accumulation of CLIPA at an elevated temperature (42 degrees C).  相似文献   

14.
Lis1, Nudel/NudE, and dynactin are regulators of cytoplasmic dynein, a minus end–directed, microtubule (MT)-based motor required for proper spindle assembly and orientation. In vitro studies have shown that dynactin promotes processive movement of dynein on MTs, whereas Lis1 causes dynein to enter a persistent force-generating state (referred to here as dynein stall). Yet how the activities of Lis1, Nudel/NudE, and dynactin are coordinated to regulate dynein remains poorly understood in vivo. Working in Xenopus egg extracts, we show that Nudel/NudE facilitates the binding of Lis1 to dynein, which enhances the recruitment of dynactin to dynein. We further report a novel Lis1-dependent dynein–dynactin interaction that is essential for the organization of mitotic spindle poles. Finally, using assays for MT gliding and spindle assembly, we demonstrate an antagonistic relationship between Lis1 and dynactin that allows dynactin to relieve Lis1-induced dynein stall on MTs. Our findings suggest the interesting possibility that Lis1 and dynactin could alternately engage with dynein to allow the motor to promote spindle assembly.  相似文献   

15.
Dynactin is a protein complex required for the in vivo function of cytoplasmic dynein, a microtubule (MT)‐based motor. Dynactin binds both dynein and MTs via its p150Glued subunit, but little is known about the ‘pointed‐end complex’ that includes the protein subunits Arp11, p62 and the p27/p25 heterodimer. Here, we show that the p27/p25 heterodimer undergoes mitotic phosphorylation by cyclin‐dependent kinase 1 (Cdk1) at a single site, p27 Thr186, to generate an anchoring site for polo‐like kinase 1 (Plk1) at kinetochores. Removal of p27/p25 from dynactin results in reduced levels of Plk1 and its phosphorylated substrates at kinetochores in prometaphase, which correlates with aberrant kinetochore–MT interactions, improper chromosome alignment and abbreviated mitosis. To investigate the structural implications of p27 phosphorylation, we determined the structure of human p27. This revealed an unusual left‐handed β‐helix domain, with the phosphorylation site located within a disordered, C‐terminal segment. We conclude that dynactin plays a previously undescribed regulatory role in the spindle assembly checkpoint by recruiting Plk1 to kinetochores and facilitating phosphorylation of important downstream targets.  相似文献   

16.
Activation of macrophages causes increased cell spreading, increased secretion of cytokines and matrix metalloproteinases, and enhanced phagocytosis. The intracellular mechanisms driving the up-regulation of these activities have not been completely clarified. We observe that classical activation of murine resident peritoneal or RAW 264.7 macrophages with a combination of IFN-gamma and LPS induces an increase in stabilized cytoplasmic microtubules (MTs), measured with an anti-acetylated alpha-tubulin Ab. We examined the mechanism of this MT stabilization and find that macrophage activation causes redistribution of the MT plus-end tracking protein, cytoplasmic linker protein-170 (CLIP-170). CLIP-170 is localized at the distal plus-ends of MTs in resting macrophages, but accumulates along the length of MTs in IFN-gamma/LPS-activated cells. A direct involvement of CLIP-170 in MT stabilization has not been thoroughly established. In this study, we show that expression of a mutant CLIP-170 chimeric protein (dominant-negative CLIP-170-GFP), lacking the MT-binding domain, prevents MT stabilization in activated RAW 264.7 macrophages. Furthermore, we find enhanced CLIP-170 association with MTs and MT stabilization by treating resting macrophages with okadaic acid, implicating the protein phosphatase 2A in CLIP-170 binding and MT stabilization in RAW 264.7 cells. Finally, we observed enhanced cell spreading and phagocytosis in both IFN-gamma/LPS-activated and okadaic acid-treated resting RAW 264.7 cells, which are markedly reduced in activated cells expressing dominant-negative CLIP-170-GFP. These results identify CLIP-170 as a key regulator of MT stabilization and establish a prominent role for stabilized MTs in cell spreading and phagocytosis in activated macrophages.  相似文献   

17.
Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150Glued (J. Cell Biol. 2004: 166, 1003–1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an “open” conformation and a higher binding affinity for growing MT ends and p150Glued as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the “folded back” conformation shows decreased MT association and does not interact with p150Glued. We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.  相似文献   

18.
Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.  相似文献   

19.
CLIP-associating protein (CLASP) 1 and CLASP2 are mammalian microtubule (MT) plus-end binding proteins, which associate with CLIP-170 and CLIP-115. Using RNA interference in HeLa cells, we show that the two CLASPs play redundant roles in regulating the density, length distribution and stability of interphase MTs. In HeLa cells, both CLASPs concentrate on the distal MT ends in a narrow region at the cell margin. CLASPs stabilize MTs by promoting pauses and restricting MT growth and shortening episodes to this peripheral cell region. We demonstrate that the middle part of CLASPs binds directly to EB1 and to MTs. Furthermore, we show that the association of CLASP2 with the cell cortex is MT independent and relies on its COOH-terminal domain. Both EB1- and cortex-binding domains of CLASP are required to promote MT stability. We propose that CLASPs can mediate interactions between MT plus ends and the cell cortex and act as local rescue factors, possibly through forming a complex with EB1 at MT tips.  相似文献   

20.
Mutations in the LIS1 gene cause lissencephaly, a human neuronal migration disorder. LIS1 binds dynein and the dynein-associated proteins Nde1 (formerly known as NudE), Ndel1 (formerly known as NUDEL), and CLIP-170, as well as the catalytic alpha dimers of brain cytosolic platelet activating factor acetylhydrolase (PAF-AH). The mechanism coupling the two diverse regulatory pathways remains unknown. We report the structure of LIS1 in complex with the alpha2/alpha2 PAF-AH homodimer. One LIS1 homodimer binds symmetrically to one alpha2/alpha2 homodimer via the highly conserved top faces of the LIS1 beta propellers. The same surface of LIS1 contains sites of mutations causing lissencephaly and overlaps with a putative dynein binding surface. Ndel1 competes with the alpha2/alpha2 homodimer for LIS1, but the interaction is complex and requires both the N- and C-terminal domains of LIS1. Our data suggest that the LIS1 molecule undergoes major conformational rearrangement when switching from a complex with the acetylhydrolase to the one with Ndel1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号