首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The expression of a common alpha-subunit mRNA of glycoprotein hormones was examined in the pituitary of chick embryos at various stages of development by in situ hybridization with a digoxigenin-labeled quail alpha-subunit cRNA probe. As a comparison with the expression of alpha-subunit mRNA, the onset of luteinizing hormone (LH) immunoreactivity was examined by immunohistochemical staining with a chicken LH antiserum. Both alpha-subunit mRNA and LH immunoreactivity began to appear in the basal-posterior region of the Rathke's pouch at embryonic day (E) 3.5. At E4.5 when the cephalic and caudal lobes of the pars distalis could be distinguished in the Rathke's pouch, intense signal for alpha-subunit mRNA was restricted to the cephalic lobe, consisting of a high columnar epithelium. At E6, gonadotrophs that were ovoid in shape, expressed intense signal for alpha-subunit mRNA, and revealed intense immunoreactivity for LH, were first detected in the cephalic lobe. At this stage, alpha-subunit mRNA expression became weak in the undifferentiated columnar cells of the cephalic lobe. At E8, the pars tuberalis primordium located close to the median eminence was formed at the lateral-apical end of the cephalic lobe. The primordium expressed intense signal for alpha-subunit mRNA. Gonadotrophs showing immunoreactivity for LH were densely distributed throughout the cephalic and caudal lobes in 8-day-old embryos. The pars tuberalis primordium expressing alpha-subunit mRNA progressively extended along the median eminence with embryonal age and reached the rostoral end by E14. Thus, both primordia of the pars distalis and pars tuberalis expressed intense signal for the common alpha-subunit mRNA. This subunit may play a role in the cytodifferentiation of the adenohypophysis.  相似文献   

3.
4.
The effect of different photoperiods on the specific secretory cells of the pars tuberalis was examined in male chicks. Animals were placed in one of three different photoperiod regimens: (1) normal control (light:dark = 12 h:12 h), (2) continuous light (L:D = 24 h:0), and (3) extended darkness (L:D = 1 h:23 h). The levels of common alpha-subunit mRNA in the pars tuberalis were examined by Northern blot analysis and compared with those in the pars distalis. In chicks exposed to continuous light for 1 week, alpha-subunit mRNA level in the pars tuberalis was decreased, although the level in the pars distalis was increased. Exposure to continuous light for 30 days also induced a decrease in alpha-subunit mRNA level in the pars tuberalis. On the other hand, in chicks exposed to extended darkness for 1 week, the alpha-subunit mRNA level of the pars tuberalis was markedly increased. In situ hybridization with digoxigenin-labeled common alpha-subunit cRNA probe also showed that the hybridization signals for alpha-subunit mRNA in the pars tuberalis cells become weak under continuous light for 30 days but they are very intense under extended darkness. Thus, the synthesis of alpha-subunits in the chick pars tuberalis was inhibited by continuous light but stimulated by extended darkness. These results were confirmed by semiquantitative electron-microscopic analyses. After exposure to continuous light for 30 days, many pars tuberalis (PT)-specific cells were filled with enlarged secretory granules, showing the reduction of secretory activity. On the contrary, extended darkness for 30 days induced hypertrophy of the PT-specific cells; the areas of cytoplasm and nucleus were significantly increased. In addition, secretory granules became small in size and exocytotic features were more frequent. Mitochondria and lysosomes were also increased in number. Thus, the synthetic and secretory activities of the PT-specific cells were increased under extended darkness. The data indicate that the specific cells of the pars tuberalis are responsive to photoperiodic changes in the chick.  相似文献   

5.
Hormone effects on the synthesis of alpha(1) (acute-phase) glycoprotein and of albumin by isolated rat hepatocytes in suspension were examined. Insulin, glucagon, cortisol, somatotropin (bovine growth hormone) and tri-iodothyronine were added to achieve physiological concentrations in the medium [Jeejeebhoy, Ho, Greenberg, Phillips, Bruce-Robertson & Sodtke (1975) Biochem. J.146, 141-155]. After periodic additions, there were increases (compared with values for non-hormone-treated suspensions) in the concurrent absolute syntheses of alpha(1) (acute-phase) glycoprotein and of albumin. Trends were detectable after 24h, and significant increases were demonstrated after 48h of incubation (219 and 119% respectively of control values). Manipulation of hormones, by omission from the mixture or by addition of only one or two hormones in various combinations, indicated that for alpha(1) (acute-phase) glycoprotein (which may be representative of some other acute-phase proteins), cortisol was one of the most important hormones involved in the stimulation of synthesis, with glucagon enhancing the effect of cortisol but not being stimulatory by itself. Addition of actinomycin D inhibited this stimulation, suggesting that cortisol might have acted through promotion of RNA synthesis. For albumin, cortisol alone did not stimulate synthesis, but its absence from a hormone mixture significantly decreased synthesis compared with that observed with the complete hormone mixture. Our findings support the possibility that following tissue injury, synthesis of alpha(1) (acute-phase) glycoprotein may be stimulated by the hormonal response to this injury (which response includes elevated blood concentrations of cortisol and glucagon).  相似文献   

6.
To clarify whether the common -subunit of glycoprotein hormones is involved in photic signal transduction, -subunit mRNA levels in the pars tuberalis (PT) of both hamsters and chickens were estimated at different time points of the day/night cycle by laser capture microdissection (LCM) and real-time quantitative polymerase chain reaction (PCR). Distinct diurnal rhythms were found for -subunit mRNA expression in both species. In the hamster PT, -subunit mRNA levels gradually increased during the dark phase; the diurnal peak was found at time (ZT) 21. The lowest value was obtained at ZT 5 during the day. In the chicken PT, -subunit mRNA levels were maintained at a low constant level at night between ZT 13 and 21. Thus, -subunit mRNA expression in the PT depends on the light–dark cycle and may be controlled by the pineal hormone melatonin. The effect of various photoperiods on the hamster PT was examined by real-time PCR, immunohistochemistry, and electron microscopy. In hamsters kept under short photoperiod (L/D=8 h:16 h) or complete darkness, a dramatic decrease of -subunit mRNA level was induced, and the PT-specific cells accumulated glycogen-like particles and enlarged secretory granules. Under long photoperiods (L/D=16 h:8 h), however, the -subunit mRNA level was elevated and the PT-specific cells exhibited highly active features, i.e., piles of lamellar cisternae of rough endoplasmic reticulum and well-developed Golgi complexes. The -subunit synthesized by the PT-specific cells may therefore participate in the circadian and seasonal regulation of endocrine activities.  相似文献   

7.
Although chemotaxis has been proposed to guide sperm to egg throughout the animal kingdom, sperm attractants released from mammalian eggs have not been identified. Since the G protein subunit α-gustducin is accepted as a marker of chemosensitive cells, attempts were made to explore whether α-gustducin is also expressed in spermatozoa of mammals. Immunohistochemical approaches using an anti-α-gustducin-specific antibody revealed the most intense immunoreactivity in differentiating spermatids. Further evidence for the α-gustducin expression was obtained analyzing testicular and sperm-derived tissue preparations in western blot analyses. To elucidate whether α-gustducin is retained in mature spermatozoa, epididymal mouse and rat sperm were subjected to immunocytochemistry as well as immunogold electron microscopy. A specific staining was obtained within the circumference of the midpiece-localized mitochondria, on the axoneme and the outer dense fibers surrounding the microtubules of this region, whereas no labeling was detectable in the end piece regions. The analysis of ejaculated bovine and human sperm revealed a comparable segmental distribution pattern for α-gustducin. Although a possible function for α-gustducin has yet to be determined, the axonemal-associated localization within the midpiece and principal piece of different mammalian spermatozoa raises the possibility that this G protein α-subunit may process intracellular signals controlling sperm motility. Johanna Fehr and Dorke Meyer contributed equally to this work.  相似文献   

8.
Intracellular protein distribution and sorting were examined in rat parotid striated duct cells, in which tissue kallikrein is apical, and Na,K-ATPase is basolateral. Electron-microscopic immunogold cytochemistry, with both polyclonal and monoclonal antibodies, demonstrated these enzymes at opposite poles of the cells and in distinct intracellular sites. Kallikrein was found within apical secretory granules, whereas Na,K-ATPase was present on basolateral cell membranes. In addition, kallikrein was localized throughout cisternae of all Golgi profiles, whereas Na,K-ATPase (-subunit) was found only in small peripheral vesicles and/or lateral cisternal extensions of a basal subset of Golgi profiles. These differences in the subcellular distribution of the two marker antigens were most clearly seen with double immunogold labelling. Our results suggest that kallikrein, an apical, regulated secretory protein, and Na,K-ATPase, a basolateral, constitutively transported membrane protein, are segregated at (or prior to) the level of the Golgi apparatus rather than in the trans-Golgi network (TGN), as was expected.Abbreviations ATP adenosine tri-phosphate - HBSS Hanks' balanced salt solution - GaM goat anti-mouse - GaR goat anti-rabbit - PBS phosphate-buffered saline - RaM rabbit anti-mouse - RER rough endoplasmic reticulum - TGN trans-Golgi network  相似文献   

9.
10.
Production of the glycoprotein hormone common α-subunit and placental alkaline phosphatase activity can be modulated in HeLa cells by a variety of deoxynucleosides. Dose response curves for thymidine (Thd), fluorodeoxyuridine (FdUrd), bromodeoxyuridine (BrdUrd) and iododeoxyuridine (IdUrd) demonstrate that, in general, alkaline phosphatase was increased by lower concentrations of inducer than was α-subunit. The deoxynucleosides were not as effective as sodium butyrate as inducers of either protein. Whereas Thd and the halogenated dUrd derivatives enhanced protein expression, deoxycytidine (dCyd) had negative effects. Induction by deoxynucleosides of both alkaline phosphatase and α-subunit was inhibited by dCyd, but induction of alkaline phosphatase by butyrate was more sensitive to dCyd inhibition than was the buryrate-mediated induction of α-subunit. These results suggest that the two proteins are not regulated in a coordinate manner. Reversal of alkaline phosphatase induction by dCyd was not observed in cells preincubated with sodium butyrate for 6–24 h before the addition of dCyd, indicating that the deoxynucleoside interferes with an early event in the butyrate-mediated response. Combinations of butyrate with Thd, BrdUrd or IdUrd were synergistic with respect to the induction of HeLa-α. It is concluded that incorporation of the deoxynucleosides into DNA may not be required for the synergistic response since 2′,5′-dideoxythymidine was an effective as Thd. Cytoplasmic dot hybridizations demonstrate that a primary effect of the various effectors is to increase the steady-state levels of α-subunit mRNA. There was a good correlation between α-subunit accumulation and corresponding levels of α-mRNA, suggesting that regulation occurs at a pretranslational site. Although the mechanism(s) is not understood, these data provide evidence that nucleosides or their derivatives can significantly affect gene expression.  相似文献   

11.
Ovine corticotropin-releasing factor (CRF) stimulates α-MSH release and cyclic AMP accumulation in rat pars intermedia cells in culture at ED50 values of 1 and 6 nM, respectively. The stimulatory effect of CRF on both parameters is inhibited by the dopaminergic agonist 2-bromo-α-ergocryptine (CB-154). The present data show that CRF is a potent stimulator of peptide secretion in the intermediate lobe of the pituitary gland and suggest a role of this pituitary lobe in the response to stress. In addition, the present data clearly indicate a role of cyclic AMP as mediator of the action of CRF in pars cells.  相似文献   

12.
13.
14.
The oxyntic mucosa of the mammalian stomach is rich in endocrine cells, such as ECL cells, A-like cells, somatostatin cells, D1/P cells and, in some species, enterochromaffin cells. The various endocrine cell types can be distinguished on the basis of their characteristic cytoplasmic granules and vesicles. The ECL cells contain numerous large secretory vesicles and relatively few, small electron-dense granules and small clear microvesicles. We have suggested that in the rat the ECL cells contain most of the gastric histamine with the secretory vesicles as the major histamine storage site in these cells. α-Fluoromethylhistidine is an irreversible inhibitor of histidine decarboxylase, the histamine-forming enzyme. We have previously shown that this enzyme inhibitor depletes histamine from the ECL cells in the rat and reduces the number of secretory vesicles in the cytoplasm. In the present study, we have examined whether α-fluoromethylhistidine affects the ECL cells in other species and whether it affects other types of endocrine cells in the oxyntic mucosa of the rat. Mice, rats and hamsters were treated with the inhibitor (3 mg/kg per h) via minipumps subcutaneously for 24 h. This treatment lowered the oxyntic mucosal histamine concentration by 65–90% and the number and volume density of the secretory vesicles by 85–95% in the ECL cells of the three species examined. In contrast, the number and volume density of granules and microvesicles were not greatly affected. No evidence was found for an effect of α-fluoromethylhistidine on A-like cells, somatostatin cells or D1/P cells of the rat stomach, suggesting that, unlike the ECL cells, they do not contain histamine. Received: 18 January 1996 / Accepted: 23 May 1996  相似文献   

15.
The expression of K+-Cl cotransporters (KCC) was examined in pancreatic islet cells. mRNA for KCC1, KCC3a, KCC3b and KCC4 were identified by RT-PCR in islets isolated from rat pancreas. In immunocytochemical studies, an antibody specific for KCC1 and KCC4 revealed the expression of KCC protein in α-cells, but not pancreatic β-cells nor δ-cells. A second antibody which does not discriminate among KCC isoforms identified KCC expression in both α-cell and β-cells. Exposure of isolated α-cells to hypotonic solutions caused cell swelling was followed by a regulatory volume decrease (RVD). The RVD was blocked by 10 μM [dihydroindenyl-oxy] alkanoic acid (DIOA; a KCC inhibitor). DIOA was without effect on the RVD in β-cells. NEM (0.2 mM), a KCC activator, caused a significant decrease of α-cell volume, which was completely inhibited by DIOA. By contrast, NEM had no effects on β-cell volume. In conclusion, KCCs are expressed in pancreatic α-cells and β-cells. However, they make a significant contribution to volume homeostasis only in α-cells.  相似文献   

16.
17.
We have recently shown that the administration of phenobarbital to rats leads t an increased serum α1-acid glycoprotein content with alterations in the relative proportion of the sugar moiety. Therefore, α1-acid glycoprotein was purified from normal (α1-acid glycoproteinN) and phenobarbital-treated rats (α1-acid glycoproteinPB). Glycans were separated by AX-10 chromatography and analysed by gas chromatography. It appears that, compared to α1-acid glycoproteinN, α1-acid glycoproteinPB had a higher carbohydrate content (31.7% compared to 26%) and a non-negligible amount of neutral oligosaccharide (12.2% compared to 1.3%). No tetrasialyl oligosaccharides in α1-acid glycoproteinPB were detected, whereas their relative proportion in α1-acid glycoproteinN was 27%.  相似文献   

18.
 Nasal mucosa covered by pseudostratified ciliated epithelia can be injured by microbial infection and physical and chemical agents. To elucidate mechanisms of regeneration, erosion of rat nasal mucosa was produced by intranasal instillation of trichloroacetic acid, and tissue specimens were then sequentially obtained after 1–14 days. Since tenascin-C (TN-C) and its receptor, α9β1 integrin, are assumed to play important roles in regeneration of stratified squamous epithelia, their expression was evaluated by immunohistochemistry and in situ hybridization. Three to five days after the injury, TN-C mRNA was found in epithelial cells of migrating fronts and in epithelial sheets recovering ulcerated surfaces between the fronts and normal regions. TN-C deposition was increased under such sheets. Enhanced α9 staining was also evident in the involved epithelium. 5-Bromo-2’-deoxyuridine incorporation assays revealed significant increase in proliferating cells in cell sheets over TN-C deposits at 3–7 days. Therefore, we conclude that regenerating epithelial cells produce and secrete TN-C, associated with an increase in α9 expression, and that interactions between these molecules could regulate migration and proliferation of the epithelial cells in an autocrine manner. Accepted: 18 December 1998  相似文献   

19.
20.
 The major pancreatic excretory ducts have been shown to contain a large number of specialized epithelial cells, named brush cells, that are characterized by an apical tuft of stiff microvilli. The function of pancreatic brush cells is unknown. Because of some structural similarities to taste receptor cells of the tongue, we addressed the question whether pancreatic brush cells contain the taste cell-specific GTP-binding protein, α-gustducin, and hence might be considered to be involved in intraductal chemoreception. By immunostaining, we show that ductal brush cells of the rat pancreatic duct system contain α-gustducin, which is concentrated in the apical tuft of microvilli and is also found along the basolateral cell surface. A further outcome of this study is that brush cells are concentrated in the terminal portions of extralobular ducts and in the major pancreatic duct where brush cells comprise up to 22% of the ductal epithelium. Immunoblotting of the major pancreatic duct revealed a 42-kDa band that comigrated with α-gustducin of the rat tongue. In view of our previous observation that the ductal brush cells are particularly rich in nitric oxide synthase-I, there is reason to assume that these cells might play a role in certain aspects of chemoreceptive signalling. Thus, chemosensory control of pancreatic secretion might occur at two independent sites, the intestine and the terminal portions of the excretory duct system. Accepted: 2 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号