首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selected trace metals were analyzed in human malignant and nonmalignant (benign) breast tissue samples by the flame atomic absorption spectrophotometric method. In malignant tissues, dominant mean concentrations were revealed by Na, K, Ca, Mg, Fe, Zn, and Al at 927, 552, 231, 61.7, 36.5, 18.3, and 8.94 microg/g, respectively, while the mean metal levels in benign tissues were 903, 435, 183, 63.3, 24.7, 14.5, and 10.1 microg/g, respectively. Average concentrations of Cd, Co, Cr, Cu, Fe, Mn, K, Ca, and Zn were noted to be significantly higher in the malignant tissues compared with the benign tissues. Significantly strong correlations (r > 0.50) in malignant tissues were observed between Mn and Co, Mn and Cd, Cd and Cr, Fe and Mn, Cd and Co, Fe and Co, Mg and Pb, Cd and Fe, Mg and Ni, Pb and Ni, Ni and Sr, and Fe and Pb, whereas, Cd and Co, Cd and Mn, Co and Mg, Co and Mn, Cu and Mn, Co and Ni, Mg and Ni, Cd and Cu, Cd and Ni, Ca and Mg, Mn and Pb, Cu and Ni, Fe and Ni, Cd and Mg, Co and Cu, Cr and Na, and Cd and Cr revealed strong and significant relationships in benign tissues at p < 0.001. Principal component analysis of the metals data yielded six principal components for malignant tissues and five principal components for benign tissues, with considerably different loadings, duly supported by cluster analysis. The study revealed a considerably different pattern of distribution and mutual correlations of trace metals in the breast tissues of benign and cancerous patients.  相似文献   

2.
重金属对油菜种子萌发和胚根生长的影响   总被引:5,自引:0,他引:5  
分析了Hg2 、Cd2 、Ni2 、Co2 、Zn2 5种重金属离子对油菜种子萌发和胚根伸长的影响,以及金属离子K 、Mg2 和Ca2 与重金属的交互作用。结果表明:(1)重金属对油菜种子萌发的抑制作用依次为Hg2 >Cd2 和Co2 >Ni2 >Zn2 ,而对胚根生长的毒害作用依次为Hg2 >Cd2 >Co2 >Ni2 >Zn2 。(2)萌发率为40%以上时,K 和Ca2 可以提高Ni2 、Zn2 和Co2 胁迫下油菜种子的萌发率,却进一步降低了Hg2 、Cd2 胁迫下种子的萌发;Mg2 可以提高Ni2 、Zn2 、Cd2 和Co2 胁迫下种子的萌发率,但对Hg2 毒害却没有缓解。(3)胚根伸长率达到60%以上时,K 和Mg2 增强了Ni2 、Hg2 、Cd2 和Co2 对胚根生长的抑制,而Ca2 则缓解了Zn2 、Ni2 和Co2 对胚根生长的抑制作用。研究结果对于重金属复合污染土壤中植物种子的萌发和定植具有理论和实践意义。  相似文献   

3.
Using the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO), the role for phytochelatins (PCs) was evaluated in Cu, Cd, Zn, As, Ni, and Co tolerance in non-metallicolous and metallicolous, hypertolerant populations of Silene vulgaris (Moench) Garcke, Thlaspi caerulescens J.&C. Presl., Holcus lanatus L., and Agrostis castellana Boiss. et Reuter. Based on plant-internal PC-thiol to metal molar ratios, the metals' tendency to induce PC accumulation decreased in the order As/Cd/Cu > Zn > Ni/Co, and was consistently higher in non-metallicolous plants than in hypertolerant ones, except for the case of As. The sensitivities to Cu, Zn, Ni, and Co were consistently unaffected by BSO treatment, both in non-metallicolous and hypertolerant plants, suggesting that PC-based sequestration is not essential for constitutive tolerance or hypertolerance to these metals. Cd sensitivity was considerably increased by BSO, though exclusively in plants lacking Cd hypertolerance, suggesting that adaptive cadmium hypertolerance is not dependent on PC-mediated sequestration. BSO dramatically increased As sensitivity, both in non-adapted and As-hypertolerant plants, showing that PC-based sequestration is essential for both normal constitutive tolerance and adaptive hypertolerance to this metalloid. The primary function of PC synthase in plants and algae remains elusive.  相似文献   

4.
The concentrations of metals (Mn, Pb, Fe, Zn, Cu, Cd,Co, Ni, Cr, Na, K, Ca, Mg) were determined in thegreen alga Ulva rigida, in the sediment andseawater of Thermaikos Gulf (Greece) during monthlysamplings in 1994–1995. This Gulf is the recipientof domestic and industrial effluents. Pb, Fe, Cu, Coand Cr concentrations in U. rigida at the studyarea were higher than those 13 years earlier andapparently came from different sources than those forZn, Cd and Ni. The relative abundance of metals inthe alga decreased in the order: Mg > Na > K >Ca > Pb > Fe > Mn > Zn > Cr, Cu > Ni >Co > Cd. Only Cu concentrations in the alga fromKalochori and Cd ones from Viamyl showed significantseasonal changes. Cu and Cd concentrations ingeneral followed the same pattern of variation, withminimum values in winter-spring. This pattern isdiscussed in relation to growth dynamics and tissueage. Only Pb concentrations in the alga showed asignificant positive correlation with concentrationsin the seawater. There were both positive andnegative correlations among some metals in the alga. It is concluded that U. rigida can be used as anindicator species, especially for Pb.  相似文献   

5.
6.
Iron- and sulfur-oxidizing bacteria identified as Thiobacillus ferrooxidans and T. thiooxidans were successfully enriched from various soil samples contaminated with heavy metals and organic compounds. Depending on the growth medium, the soil sample, and the type of contaminant, the indigenous isolates solubilized &gt; 50% of most of the heavy metals present in the solid sample (As, Cd, Co, Cr, Cu, Ni, V, Zn, B, Be). Leaching with T. ferrooxidans strains resulted in total extraction of Cd, Co, Cu, and Ni. With sulfur-oxidizing bacteria &gt; 80% of Cd, Co, Cu, and Zn was mobilized from rainwater sludge. Pb and Ba were not detected in the leachate, given the insolubility of their sulfate compounds. An increase in pulp density up to 20%, indicating 6.6% total organic carbon in the soil and rubble leach experiment (sample 557), did not inhibit the growth of the indigenous T. ferrooxidans strain. In view of these results, bioleaching appears to have some potential for remediation of heavy metal contaminated soils.  相似文献   

7.
Ciceri  G.  Maran  Ciceri  Martinotti  W.  Queirazza  G. 《Hydrobiologia》1992,(1):501-517
Concentrations of the heavy metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in sea water, suspended matter, sediments and pore water samples collected in a coastal area of the middle Tyrrhenian Sea. Concentration factors between pore water (extracted from the first centimeter of the sediments) and the overlying sea water (taken 30 cm above the sea bed) were less than 1 for Cr, Cu and Pb, 1–10 for Cd and Ni, 10–100 for Fe and Co, 100–1000 for Mn, and 1–100 for Zn.The benthic fluxes of heavy metals at the sediment-water interface were measured directly using in situ benthic chambers and calculated using Fick's first law during two experimental periods, one in 1986 and the other in 1988. The fluxes of Cu, Ni, Pb and Zn varied significantly over time; this appeared to be related to their relatively low ( 10) concentration factors. From the benthic chamber experiments, metals with positive fluxes were in the order: Mn > Fe > Co > Cd, while those with negative fluxes were: Zn > Pb > Ni Cu. Fluxes calculated using Fick's Law were: positive – Mn > Fe > Zn (or Zn > Fe) > Ni > Co > Cd, negative fluxes Pb > Cu > Cr.Measured (benthic chamber) and calculated (Fick's first law) fluxes for Co, Cd, Mn, Pb and Fe were comparable within an order of magnitude, although less agreement was found for Cu, Ni and Zn. Removal of Ni and Zn at the sediment-water interface has been proposed to explain the fact that the measured and calculated fluxes have opposite directions for these metals.  相似文献   

8.
The high levels of some metals in metal hyperaccumulator plants may be transferred to insect associates. We surveyed insects collected from the South African Ni hyperaccumulator Berkheya coddii to document whole-body metal concentrations (Co, Cr, Cu, Mg, Mn, Ni, Pb, Zn). We also documented the concentrations of these metals in leaves, stems and inflorescences, finding extremely elevated levels of Ni (4 700-16 000μg/g) and high values (5-34μg/g) for Co, Cr, and Pb. Of 26 insect morphotypes collected from B. coddii, seven heteropterans, one coleopteran, and one orthopteran contained relatively high concentrations of Ni (〉 500μg/g). The large number of high-Ni heteropterans adds to discoveries of others (from California USA and New Caledonia) and suggests that members of this insect order may be particularly Ni tolerant. Nymphs of the orthopteran (Stenoscepa) contained 3 500 μg Ni/g, the greatest Ni concentration yet reported for an insect. We also found two beetles with elevated levels of Mg (〉 2 800 μg/g), one beetle with elevated Cu (〉 70 μg/g) and one heteropteran with an elevated level of Mn (〉 200 μg/g). Our results show that insects feeding on a Ni hyperaccumulator can mobilize Ni into food webs, although we found no evidence of Ni biomagnification in either herbivore or carnivore insect taxa. We also conclude that some insects associated with hyperaccumulators can contain Ni levels that are high enough to be toxic to vertebrates.  相似文献   

9.
The concentration of Zn, Cu, Pb, Cd, Ni, Co, Ag, Mn, Fe, Ca, Mg, K and Na in molluscsMacoma balthica, Mya arenaria, Cardium glaucum, Mytilus edulis andAstarte borealis from the southern Baltic was determined. The surface sediments and ferromanganese concretions associated with the molluscs were also analysed for concentration of these metals. Species- and regiondependent differences in the metal levels of the organisms were observed. The properties of molluscs analysed which have a tendency toward elevated biological tolerance of selected trace metals were specified. The interelement relationship between metal concentrations in the soft tissue and the shell was estimated and was discussed.  相似文献   

10.
The present research was conducted to determine heavy metals in agricultural soils from Çanakkale, Turkey, using a sequential extraction procedure (acid soluble, reducible, oxidizable, and residual) as proposed by the Community Bureau of Reference (BCR) of the European Commission. Soil samples were taken from 12 different cultivated sites and analyzed for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations. The results revealed an order of Mn > Cd > Pb > Co > Ni > Cu > Zn > Cr for the heavy metals based on the sum of the first three fractions (acid soluble + reducible + oxidizable). The relationships between soil properties and each metal fraction were identified through Pearsons's correlation analysis. Hierarchical cluster analysis was performed to determine the behaviors and similarities of metals in each fraction. While Mn, Pb, and Zn exhibited subjective behaviors in the acid-soluble fraction, Cd, Co, Cu, Cr, and Ni exhibited similar behaviors with each other.  相似文献   

11.
A study was made of general ecology and metal accumulation in the widespread aquatic moss Rhynchostegium riparioides, (Hedw.) C. Jens. with a view to developing the use of this species as a monitor of heavy metal pollution. In order to establish a data bank for statistical analysis, samples of water and moss were taken within a 6-week period from 105 sites (10-m reaches) in Northern England from streams and rivers of diverse physical and chemical types. Analyses were made of 14 metals (Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ba, Pb) in both 2-cm tips and whole plants. The same 14 metals were also measured in both total and filtrable water, together with 12 other variables. Samples of tips were easier to prepare for analysis, but had significantly (p < 0.001) lower concentrations of all metals except Na and K. Significant correlations (p < 0.001) between metal in moss and aqueous metal were found for ten metals (Na, K, Mg, Ca, Mn, Cu, Zn, Cd, Ba, Pb). Correlations between metals in moss and in water were in general similar for tips and whole plants, but much higher for tips with Na, Zn and Cd; the relationship was quite similar whether total or filtrable water was considered, with the exception of Ba where the correlation was much higher with the latter. A multiple regression was used to suggest which variables in water and/ or moss may influence accumulation of Co, Ni, Cu, Zn, Cd, Ba and Pb in the moss. For instance, the variables which had a very highly significant effect on Pb in tips were Pb, filtrable reactive phosphate and Zn in the water. A discussion is included of how the data may be used for monitoring purposes.  相似文献   

12.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

13.
We analysed the concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, fish and plants of the River Hindon, U.P., India, at seven sampling stations, in the year 1982. Considerable variation in concentration between water, sediments, fish and plants were noted. The concentration in the water was in the order Fe > Zn > Cr > Mn > Cu > Pb > Ni > Co > Cd, in the sediments, Fe > Mn > Zn > Ni > Cr > - Co > Cu > Pb > Cd; in a fish (Heteropnuestes fossilis) Fe > Zn > Mn > Pb > Ni > Co > Cu > Cd > Cr, and in a plant (Eicchornia crassipes) Fe > Mn > Zn > Ni > Cu > Cr > Pb > Co > Cd.  相似文献   

14.
Kidd  P.S.  Díez  J.  Monterroso Martínez  C. 《Plant and Soil》2004,258(1):189-205
The effects of heavy metals on the growth, mineral composition (P, K, Fe and Mn) and metal accumulation of five populations of Cistus ladanifer subsp. ladanifer from NE Portugal were investigated in hydroponic experiments. Plants were exposed to increasing concentrations (0–2000 M) of one of eight heavy metals: Cd, Co, Cr, Cu, Mn, Ni, Pb or Zn. Populations of C. ladanifer, whose origin was ultramafic soils (S and UB) or soils developed on basic rocks (B), showed a higher tolerance to the metals Cd, Co, Cr, and Mn, and a considerable degree of tolerance to Ni. In contrast, populations originating on acid-rock soils (M and SC) showed higher tolerance to the metals Cu and Zn. Populations showed different patterns of metal accumulation and distribution in the plant parts, suggesting different mechanisms of metal tolerance are used. The more Cd-, Co- and Mn-tolerant populations (S, UB, B and SC (Cd)) showed accumulation of these three metals in the shoots (shoot:root metal concentration ratios (S:R) > 1). Shoot concentrations of up to 309 g Cd g–1, 2667 g Co g–1 and 6214 g Mn g–1 were found in these populations. The populations, UB and M, showed considerable tolerance to Ni and Zn, respectively. These populations accumulated up to 4164 g Ni g–1 and 7695 g Zn g–1 in their shoot tissues, and these metals were efficiently transported from the roots to aerial parts (S:R > 3 (Ni), S:R > 1 (Zn)). In contrast, the S and SC populations maintained higher growth rates in the presence of Ni and Zn, respectively, but showed exclusion mechanisms of metal tolerance: reduced Ni and Zn transport to shoots (S:R < 1). Cistus ladanifer was not able to efficiently transport Cr, Cu or Pb from its roots to its aerial parts (S:R ranged from 0–0.4). The more Cu-tolerant populations, M and SC, showed a greater restriction of Cu transport to the shoots than the ultramafic- or basic-rock populations. Significant changes in the plant mineral composition were found, however, concentrations were generally above mineral deficiency levels. Based on these preliminary results the possible usefulness of this plant for phytoremediation technologies is discussed. However, further investigations are necessary to evaluate its growth and metal accumulation under soil and field conditions.  相似文献   

15.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

16.
A thymidine incorporation technique was used to determine the tolerance of a soil bacterial community to Cu, Cd, Zn, Ni, and Pb. An agricultural soil was artificially contaminated in our laboratory with individual metals at three different concentrations, and the results were compared with the results obtained by using the plate count technique. Thymidine incorporation was found to be a simple and rapid method for measuring tolerance. Data obtained by this technique were very reproducible. A linear relationship was found between changes in community tolerance levels obtained by the thymidine incorporation and plate count techniques (r = 0.732, P < 0.001). An increase in tolerance to the metal added to soil was observed for the bacterial community obtained from each polluted soil compared with the community obtained from unpolluted soil. The only exception was when Pb was added; no indication of Pb tolerance was found. An increase in the tolerance to metals other than the metal originally added to soil was also observed, indicating that there was multiple heavy metal tolerance at the community level. Thus, Cu pollution, in addition to increasing tolerance to Cu, also induced tolerance to Zn, Cd, and Ni. Zn and Cd pollution increased community tolerance to all five metals. Ni amendment increased tolerance to Ni the most but also increased community tolerance to Zn and, to lesser degrees, increased community tolerance to Pb and Cd. In soils polluted with Pb increased tolerance to other metals was found in the following order: Ni > Cd > Zn > Cu. We found significant positive relationships between changes in Cd, Zn, and Pb tolerance and, to a lesser degree, between changes in Pb and Ni tolerance when all metals and amendment levels were compared. The magnitude of the increase in heavy metal tolerance was found to be linearly related to the logarithm of the metal concentration added to the soil. Threshold tolerance concentrations were estimated from these linear relationships, and changes in tolerance could be detected at levels of soil contamination similar to those reported previously to result in changes in the phospholipid fatty acid pattern (Å. Frostegård, A. Tunlid, and E. Bååth, Appl. Environ. Microbiol. 59: 3605-3617, 1993).  相似文献   

17.
The concentrations of nine metals were measured by atomic absorption spectrophotometry in surface sediments of three coastal creeks, namely, the Ifie, Egbokodo and Ubeji creeks, in the Niger Delta of Nigeria, from August 2012 to January 2013. The aim of the study was to provide information on the spatial and seasonal distribution patterns, degree of contamination, and ecological risks of metals in these sediments. The mean concentrations of the nine metals in these creek sediments ranged from 0.30 to 3.20?mg kg?1 Cd; 10.7 to 24.7?mg kg?1 Pb, 125 to 466?mg kg?1 Cr; 3.1.10 to 14.9?mg kg?1 Cu; 4.7 to 14.3?mg kg?1 Co; 61.1 to 115?mg kg?1 Ni; 106 to 183?mg kg?1 Mn; 52.0 to 170?mg kg?1 Zn and 5 469 to 20 639?mg kg?1 Fe. In general, the metal concentrations were higher in the dry season than the wet season, except for Cr. The concentrations of Cd, Cr, Ni and Zn were above their regulatory control limits in sediment as specified by the Nigerian Regulatory Authority and Cd was identified as the main ecological risk factor. The enrichment factors for the studied metals followed the order: Cd > Cr > Ni > Zn > Pb > Co > Mn > Cu. The average multiple pollution index values indicated that these sediments were severely polluted with significant inputs from Cd, Ni and Cr.  相似文献   

18.
The present investigation was carried out to isolate bacterial strains from soil/mud samples of metal-polluted environment to check whether the natural adaptation of microbes has equipped them for bioremediation of toxic heavy metals. The primary and secondary screening resulted in 50 mesophilic autotrophic isolates of microbial consortium adapted for metal tolerance and bioadsorption potentiality. The multimetal tolerance in bacterial strain was developed by sequential transfer to higher concentrations of Cd, Cr, Cu, Pb, Ni, and Zn. The isolates were checked for their biosolubilization potential with copper-containing metal sulfide ores, viz. chalcopyrite exhibited 64% and covellite 54% solubilization in the presence of 10?3 M multiple heavy metals on the fifth day at 35°C and pH 6.0. Metal adsorption of highly potential isolate, i.e., Paenibacillus validus MP5, studied by inductively coupled plasma optical emission spectroscopy (ICP-OES), showed maximum adsorption of Zn 27%, followed by Ni and Cd 16%, Cr 15%, Co 9%, and Pb 7.5% in chalcopyrite, which suggested its possible role in decontamination of metal-polluted sites.  相似文献   

19.
The plasmas of breast cancer patients and healthy donors were analyzed for selected trace metals by a flame atomic absorption spectrophotometric method. In the plasma of breast cancer patients, mean concentrations of macronutrients/essential metals, Na, K, Ca, Mg, Fe, and Zn were 3584, 197.0, 30.80, 6.740, 5.266, and 6.170 ppm, respectively, while the mean metal levels in the plasma of healthy donors were 3908, 151.0, 72.40, 17.70, 6.613, and 2.461 ppm, respectively. Average concentrations of Cd, Cr, Cu, Mn, Ni, Pb, Sb, Sr, and Zn were noted to be significantly higher in the plasma of breast cancer patients compared with healthy donors. Very strong mutual correlations (r > 0.70) in the plasma of breast cancer patients were observed between Cd–Pb, Cr–Li, Li–K, Li–Cd, K–Cr, Li–Pb, Cr–Co, Cu–Ni, Co–K, Cd–K, and K–Pb, whereas, Al–Cr, Ca–Zn, Cd–Sb, Cd–Zn, Ca–Mg, Fe–Zn, and Na–Mn exhibited strong relationships (r > 0.60) in the plasma of healthy donors. The cluster analysis revealed considerably different apportionment of trace metals in the two groups of donors. The average metal concentrations of different age groups of the two donor categories were also evaluated, which showed the build-up of Al, Cd, Co, Cr, Mn, Li, Pb, Sb, and Zn in the plasma of breast cancer patients. The role of some trace metals in carcinogenesis is also discussed. The study indicated appreciably different patterns of metal distribution and correlation in the plasma of breast cancer patients in comparison with the healthy population.  相似文献   

20.
Twenty-one isolates of the ectomycorrhizal fungus Suillus luteus were screened for their tolerance to the heavy metals Zn, Cd, Cu and Ni, measured as inhibition of radial growth and biomass production. Two populations from even-aged pine stands were investigated: 10 isolates were obtained from an area polluted with high levels of Zn, Cd and Cu, and 11 isolates were obtained from a control population located in a nearby unpolluted area. RFLP patterns of the internal transcribed spacer region of the isolates confirmed the morphological identification of the carpophores. All isolates were maintained on basic medium without elevated metals to avoid phenotypically acquired metal tolerance. The in vitro Zn and Cd tolerance of the S. luteus isolates from the polluted habitat were significantly higher than the tolerances measured in the isolates from the nonpolluted site. This observation suggests that the elevated soil metal concentrations might be responsible for the evolution of adaptive Zn and Cd tolerance. Tolerance was maintained in an isolate not exposed to elevated metals for 3 yr. The two S. luteus populations did not differ in tolerance to Cu and Ni. The mechanisms for the adaptive Zn and Cd tolerance are not identical as there was no correlation between response to the two metals; the most Zn-tolerant isolate was the most sensitive for Cd in the metal-tolerant population. Zinc did not accumulate in basidiocarp tissue, whereas Cd levels in basidiocarps were significantly higher in the population on the polluted site. Inter-simple sequence-repeat fingerprints showed that 90% of the isolates were from different individuals. The genetic variation in the population from the unpolluted site was considerably larger than that observed at the polluted site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号