首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt signaling has been reported to block apoptosis and regulate differentiation of mesenchymal progenitors through inhibition of glycogen synthase kinase 3 and stabilization of beta-catenin. The effects of Wnt in preadipocytes may be mediated through Frizzled (Fz) 1 and/or Fz2 as these Wnt receptors are expressed in preadipocytes and their expression declines upon induction of differentiation. We ectopically expressed constitutively active chimeras between Wnt8 and Fz1 or Fz2 in preadipocytes and mesenchymal precursor cells. Our results indicated that activated Fz1 increases stability of beta-catenin, inhibits apoptosis, induces osteoblastogenesis, and inhibits adipogenesis. Although activated Fz2 does not influence apoptosis or osteoblastogenesis, it inhibits adipogenesis through a mechanism independent of beta-catenin. An important mediator of the beta-catenin-independent pathway appears to be calcineurin because inhibitors of this serine/threonine phosphatase partially rescue the block to adipogenesis caused by Wnt3a or activated Fz2. These data supported a model in which Wnt signaling inhibits adipogenesis through both beta-catenin-dependent and beta-catenin-independent mechanisms.  相似文献   

2.
Human hepatocellular carcinoma (HepG2) cells take up metallothionein (MT) by endocytosis. MT co-localizes with albumin but not with transferrin, indicating uptake via a non-classical pathway rather than via clathrin-mediated endocytosis. A lipid raft-dependent uptake is indicated by pravastatin inhibition of cholesterol synthesis and methyl-beta-cyclodextrin inhibition of cholesterol translocation to the plasma membrane, reducing MT uptake by 29% and 69%, respectively. Subcellular fractionation after MT uptake reveals significant amounts of MT in vesicular fractions including lysosomes but virtually no MT in the cytosol. Metals bound to MT are released into the cytosol, however. The findings define a pathway for cellular metal acquisition. Together with results from other studies demonstrating secretion of MT from different cells and the presence of MT in extracellular fluids, the results suggest a function of MT in intercellular communication.  相似文献   

3.
The intestinotrophic and cytoprotective actions of glucagon-like peptide-2 (GLP-2) are mediated by the GLP-2 receptor (GLP-2R), a member of the class II glucagon-secretin G protein-coupled receptor superfamily. Although native GLP-2 exhibits a short circulating half-life, long-acting degradation-resistant GLP-2 analogues are being evaluated for therapeutic use in human subjects. Accordingly, we examined the mechanisms regulating signaling, internalization, and trafficking of the GLP-2R to identify determinants of receptor activation and desensitization. Heterologous cells expressing the transfected rat or human GLP-2R exhibited a rapid, dose-dependent, and prolonged desensitization of the GLP-2-stimulated cAMP response and a sustained GLP-2-induced decrease in levels of cell surface receptor. Surprisingly, inhibitors of clathrin-dependent endocytosis failed to significantly decrease GLP-2R internalization, whereas cholesterol sequestration inhibited ligand-induced receptor internalization and potentiated homologous desensitization. The hGLP-2R localized to both Triton X-100-soluble and -insoluble (lipid raft) cellular fractions and colocalized transiently with the lipid raft marker caveolin-1. Although GLP-2R endocytosis was dependent on lipid raft integrity, the receptor transiently associated with green fluorescent protein tagged-early endosome antigen 1-positive vesicles and inhibitors of endosomal acidification attenuated the reappearance of the GLP-2R on the cell surface. Our data demonstrate that GLP-2R desensitization and raft-dependent trafficking represent distinct and independent cellular mechanisms and provide new evidence implicating the importance of a clathrin- and dynamin-independent, lipid raft-dependent pathway for homologous G protein-coupled receptor internalization.  相似文献   

4.
Important advances in the field of tissue engineering are arising from increased interest in novel biomaterial designs with bioactive components that directly influence cell behavior. Following the recent work of Mitchell and co-workers published in BMC Biology, we review how spatial and temporal control of signaling molecules in a matrix material regulates cellular responses for tissue-specific applications.  相似文献   

5.
Lysophospholipid receptor-dependent and -independent calcium signaling   总被引:4,自引:0,他引:4  
Changes in cellular Ca(2+) concentrations form a ubiquitous signal regulating numerous processes such as fertilization, differentiation, proliferation, contraction, and secretion. The Ca(2+) signal, highly organized in space and time, is generated by the cellular Ca(2+) signaling toolkit. Lysophospholipids, such as sphingosine-1-phosphate (S1P), sphingosylphosphorylcholine (SPC), or lysophosphatidic acid (LPA) use this toolkit in a specific manner to initiate their cellular responses. Acting as agonists at G protein-coupled receptors, S1P, SPC, and LPA increase the intracellular free Ca(2+) concentration ([Ca(2+)](i)) by using the classical, phospholipase C (PLC)-dependent pathway as well as PLC-independent pathways such as sphingosine kinase (SphK)/S1P. The S1P(1) receptor, via protein kinase C, inhibits the [Ca(2+)](i) transients caused by other receptors. Both S1P and SPC also act intracellularly to regulate [Ca(2+)](i). Intracellular S1P mobilizes Ca(2+) in intact cells independently of G protein-coupled S1P receptors, and Ca(2+) signaling by many agonists requires SphK-mediated S1P production. As shown for the FcepsilonRI receptor, PLC and SphK may contribute specific components to the overall [Ca(2+)](i) transient. Of the many open questions, identification of the intracellular S1P target site(s) appears to be of particular importance.  相似文献   

6.
Lipid signaling   总被引:5,自引:0,他引:5  
Various lipids are involved in mediating plant growth, development and responses to biotic and abiotic cues, and their production is regulated by lipid-signaling enzymes. Lipid-hydrolyzing enzymes play a pivotal role both in the production of lipid messengers and in other processes, such as cytoskeletal rearrangement, membrane trafficking, and degradation. Studies on the downstream targets and modes of action of lipid signals in plants are still in their early stages but distinguishing features of plant lipid-based signaling are being recognized. Phospholipase D enzymes and phosphatidic acid may play a broader role in lipid signaling in plants than in other systems.  相似文献   

7.
Heterotrimeric G-proteins are important signal transducers in all eukaryotes. The plant hormone abscisic acid (ABA) has emerged as a key regulator of G-protein-mediated signaling pathways in plants. ABA-regulation of G-protein signaling involves both conventional and novel mechanisms. We have utilized the null mutant of the Arabidopsis G-protein α subunit gpa1 to evaluate to what extent ABA-dependent changes in the proteome are regulated by G-proteins. We used Arabidopsis root tissue as both ABA and G-proteins, individually and in combination, affect root growth and development. We identified 720 proteins, of which 42 showed GPA1-dependent and 74 showed ABA-dependent abundance changes. A majority of ABA-regulated proteins were also GPA1-dependent. Our data provide insight into how tissue specificity might be achieved in ABA-regulated G-protein signaling. A number of proteins related to ER body formation and intracellular trafficking were altered in gpa1 mutant, suggesting a novel role for GPA1 in these pathways. A potential link between ABA metabolism and ABA signaling was also revealed. The comparison of protein abundance changes in the absence of ABA offers clues to the role of GPA1 in ABA-independent signaling pathways, for example, regulation of cell division. These findings substantially contribute to our knowledge of G-protein signaling mechanisms in plants.  相似文献   

8.
Lipid rafts are cholesterol-enriched microdomains involved in cellular trafficking and implicated as portals for certain pathogens. We sought to determine whether the oral pathogen Porphyromonas gingivalis enters macrophages via lipid rafts, and if so, to examine the impact of raft entry on its intracellular fate. Using J774A.1 mouse macrophages, we found that P. gingivalis colocalizes with lipid rafts in a cholesterol-dependent way. Depletion of cellular cholesterol using methyl-beta-cyclodextrin resulted in about 50% inhibition of P. gingivalis uptake, although this effect was reversed by cholesterol reconstitution. The intracellular survival of P. gingivalis was dramatically inhibited in cholesterol-depleted cells relative to untreated or cholesterol-reconstituted cells, even when infections were adjusted to allow equilibration of the initial intracellular bacterial load. P. gingivalis thus appeared to exploit raft-mediated uptake for promoting its survival. Consistent with this, lipid raft disruption enhanced the colocalization of internalized P. gingivalis with lysosomes. In contrast, raft disruption did not affect the expression of host receptors interacting with P. gingivalis, although it significantly inhibited signal transduction. In summary, P. gingivalis uses macrophage lipid rafts as signalling and entry platforms, which determine its intracellular fate to the pathogen's own advantage.  相似文献   

9.
Influenza virus acquires a lipid raft-containing envelope by budding from the apical surface of epithelial cells. Polarised budding involves specific sorting of the viral membrane proteins, but little is known about trafficking of the internal virion components. We show that during the later stages of virus infection, influenza nucleoprotein (NP) and polymerase (the protein components of genomic ribonucleoproteins) localised to apical but not lateral or basolateral membranes, even in cell types where haemagglutinin was found on all external membranes. Other cytosolic components of the virion either distributed throughout the cytoplasm (NEP/NS2) or did not localise solely to the apical plasma membrane in all cell types (M1). NP localised specifically to the apical surface even when expressed alone, indicating intrinsic targeting. A similar proportion of NP associated with membrane fractions in flotation assays from virus-infected and plasmid-transfected cells. Detergent-resistant flotation at 4 degrees C suggested that these membranes were lipid raft microdomains. Confirming this, cholesterol depletion rendered NP detergent-soluble and furthermore, resulted in its partial redistribution throughout the cell. We conclude that NP is independently targeted to the apical plasma membrane through a mechanism involving lipid rafts and propose that this helps determine the polarity of influenza virus budding.  相似文献   

10.
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.  相似文献   

11.
12.
Recent evidence suggests clustering of plasma membrane rafts into ceramide-enriched platforms serves as a transmembrane signaling mechanism for a subset of cell surface receptors and environmental stresses (Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001) J. Biol. Chem. 276, 20589-20596; Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001) J. Biol. Chem. 276, 23954-23961). Translocation of the secretory form of acid sphingomyelinase (ASMase) into microscopic rafts generates therein the ceramide that drives raft coalescence. This process serves to feed forward Fas activation, with approximately 2% of full caspase 8 activation sufficient for maximal ASMase translocation, leading to death-inducing signaling complex formation within ceramide-rich platforms, and apoptosis. Here we report that treatment of Jurkat T cells with UV-C also induces ASMase translocation into rafts within 1 min, catalyzing sphingomyelin hydrolysis to ceramide and raft clustering. In contrast to Fas, UV-induced ASMase translocation and activation were caspase-independent. Nonetheless, ceramide-rich platforms promoted UV-C-induced death signaling, because ASMase inhibition or raft disruption inhibited apoptosis, improving clonogenic cell survival. These studies thus define two distinct mechanisms for biologically relevant ASMase activation within rafts; a Fas-mediated mechanism dependent upon caspase 8 and FADD, and a UV-induced mechanism independent of caspase activation. Consistent with this notion, genetic depletion or pharmacologic inhibition of caspase 8 or FADD, which render Jurkat cells incapable of sphingolipid signaling and apoptosis upon Fas ligation, did not impair these events upon UV-C stimulation.  相似文献   

13.
Liu Z  Zheng X  Wang J  Wang E 《PloS one》2007,2(12):e1348
Thymopentin (TP5) triggers an immune response by contacting with T cells; however the molecular basis of how TP5 achieves this process remains incompletely understood. According to the main idea of immunomodulation, we suppose that it would be necessary for TP5 to form complex with human class II major histocompatibility complex DR molecules (HLA-DR) before TP5 interacts with T cells. The uptake of TP5 by EBV-transformed B cells expressing HLA-DR molecules and the histogram of fluorescence intensities were observed by using fluorescent- labeled TP5, testifying the direct binding of TP5 to HLA-DR. The binding specificity was confirmed by the inhibition with unlabeled TP5, suggesting the recognition of TP5 by HLA-DR. To confirm the interaction between TP5 and HLA-DR, the complex formation was predicted by using various modeling strategies including six groups of trials with different parameters, alanine substitutions of TP5, and the mutants of HLA-DR. The results demonstrated that TP5 and its alanine substitutions assumed distinct conformations when they bound to HLA-DR. The observation further showed that there was flexibility in how the peptide bound within the binding cleft. Also, the molecular analysis supplemented a newly important discovery to the effect of Val anchor on TP5 binding HLA-DR, and revealed the important effects of Glu11 and Asn62 on the recognition of TP5. These results demonstrated the capability of TP5 to associate with HLA-DR in living antigen presenting cells (APC), thereby providing a new and promising strategy to understand the immunomodulation mechanism induced by TP5 and to design potential immunoregulatory polypeptides.  相似文献   

14.
HLA class II MHC molecule alpha- and beta-chains are normally synthesized in the presence of a third molecule, the invariant chain (Ii). Although Ii is not required for surface expression of HLA class II molecules, the influence of Ii on post-translational processing and maturation HLA class II molecules has not been thoroughly studied. In the present study, BALB/c 3T3 cells were transfected with HLA-DR alpha- and beta-chains with or without co-transfection with human Ii. Although Ii had no effect on the surface expression of DR, Ii did have a profound effect on the post-translational processing of both the alpha- and beta-chains. In the absence of Ii, the major species of alpha- and beta-chains were of lower m.w. than when expressed in the presence of Ii. The differences in m.w. were shown to be caused by differences in glycosylation with the majority of alpha- and beta-chains remaining unprocessed and endo H sensitive in the absence of Ii. The small proportion of alpha-chains that were processed in the absence of Ii showed an altered m.w. and altered sensitivity to treatment with endo H relative to alpha-chains processed in the presence of Ii. Pulse/chase studies demonstrated that although the majority of the alpha- and beta-chains remained unprocessed in the absence of Ii, the small amount that was processed was done so at a rate similar to that observed for alpha- and beta-chains processed in the presence of Ii. These studies demonstrate that Ii influences the post-translational processing of human class II molecules by affecting the proportion of alpha- and beta-chains that are processed and by determining the degree of processing of oligosaccharides on mature alpha-chains.  相似文献   

15.
Protein serine/threonine kinase casein kinase 2 (CK2) is a key player in cell growth and proliferation but is also a potent suppressor of apoptosis. CK2 has been found to be dysregulated in all the cancers that have been examined, including prostate cancer. Investigations of CK2 signaling in the prostate were originally initiated in this laboratory, and these studies have identified significant functional activities of CK2 in relation to normal prostate growth and to the pathobiology of androgen-dependent and -independent prostate cancer. We present a brief overview of these developments in the context of prostate biology. An important outcome of these studies is the emerging concept that CK2 can be effectively targeted for cancer therapy.  相似文献   

16.
B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.  相似文献   

17.
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.  相似文献   

18.
The serum-derived phospholipid growth factor, lysophosphatidate (LPA), activates cells through the EDG family of G protein-coupled receptors. The present study investigated mechanisms by which dephosphorylation of exogenous LPA by lipid phosphate phosphatase-1 (LPP-1) controls cell signaling. Overexpressing LPP-1 decreased the net specific cell association of LPA with Rat2 fibroblasts by approximately 50% at 37 degrees C when less than 10% of LPA was dephosphorylated. This attenuated cell activation as indicated by diminished responses, including cAMP, Ca(2+), activation of phospholipase D and ERK, DNA synthesis, and cell division. Conversely, decreasing LPP-1 expression increased net LPA association, ERK stimulation, and DNA synthesis. Whereas changing LPP-1 expression did not alter the apparent K(d) and B(max) for LPA binding at 4 degrees C, increasing Ca(2+) from 0 to 50 micrometer increased the K(d) from 40 to 900 nm. Decreasing extracellular Ca(2+) from 1.8 mm to 10 micrometer increased LPA binding by 20-fold, shifting the threshold for ERK activation to the nanomolar range. Hence the Ca(2+) dependence of the apparent K(d) values explains the long-standing discrepancy of why micromolar LPA is often needed to activate cells at physiological Ca(2+) levels. In addition, the work demonstrates that LPP-1 can regulate specific LPA association with cells without significantly depleting bulk LPA concentrations in the extracellular medium. This identifies a novel mechanism for controlling EDG-2 receptor activation.  相似文献   

19.
20.
Lipid rafts are established as critical structures for a variety of cellular processes, including immune cell activation. Beyond their importance for initial immune cell activation at the immunological synapse, lipid rafts are now also being recognized as important sites for cytokine and growth factor signal transduction, both in immune cells as part of secondary regulatory processes, and in non-immune cells. This review summarizes current knowledge regarding the roles of rafts in cytokine signaling and emphasizes the need for measures to better standardize the study of rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号