首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulators of G protein signaling (RGS) modulate G protein activity by functioning as GTPase-activating proteins (GAPs) for alpha-subunits of heterotrimeric G proteins. RGS14 regulates G protein nucleotide exchange and hydrolysis by acting as a GAP through its RGS domain and as a guanine nucleotide dissociation inhibitor (GDI) through its GoLoco motif. RGS14 exerts GDI activity on Galphai1, but not Galphao. Selective interactions are mediated by contacts between the alphaA and alphaB helices of the Galphai1 helical domain and the GoLoco C terminus (Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J., and Siderovski, D. P. (2002) Nature 416, 878-881). Three isoforms of Galphai exist in mammalian cells. In this study, we tested whether all three isoforms were subject to RGS14 GDI activity. We found that RGS14 inhibits guanine nucleotide exchange on Galphai1 and Galphai3 could, but not Galphai2. Galphai2 be rendered sensitive to RGS14 GDI activity by replacement of residues within the alpha-helical domain. In addition to the contact residues in the alphaA and alphaB helices previously identified, we found that the alphaA/alphaB and alphaB/alphaC loops are important determinants of Galphai selectivity. The striking selectivity observed for RGS14 GDI activity in vitro points to Galphai1 and Galphai3 as the likely targets of RGS14-GoLoco regulation in vivo.  相似文献   

2.
GoLoco motif proteins act as guanine nucleotide dissociation inhibitors (GDIs) for G-protein alpha subunits of the adenylyl cyclase-inhibitory (Galpha(i/o)) class. Rap1GAP2 is a newly identified GoLoco motif- and RapGAP domain-containing protein, and thus is considered a potential integrator of heterotrimeric and monomeric GTPase signaling. Primary sequence analysis indicated that the Rap1GAP2 GoLoco motif contains a lysine (Lys-75), rather than an arginine, at the crucial residue responsible for binding the alpha and beta phosphates of GDP and exerting GDI activity. To determine the functional outcome of this sequence variation we conducted a biophysical analysis of the human Rap1GAP2b/c GoLoco motif. We found that human Rap1GAP2b/c was deficient in GDI activity and Galpha interaction capability. Mutation of lysine-75 to arginine could not regain functional activity of the Rap1GAP2b/c GoLoco motif. Thus, the Rap1GAP2b/c GoLoco motif can be classed as inactive towards Galpha subunits. We also found that the Rap1GAP1a GoLoco motif, which lacks seven N-terminal amino acid residues present in canonical GoLoco motifs, does not interact with Galpha(i1). In contrast, the GoLoco motif of Rap1GAP1b, which is canonical in primary sequence, was found to interact with Galpha(i1).GDP.  相似文献   

3.
Heterotrimeric G-protein Galpha subunits and GoLoco motif proteins are key members of a conserved set of regulatory proteins that influence invertebrate asymmetric cell division and vertebrate neuroepithelium and epithelial progenitor differentiation. GoLoco motif proteins bind selectively to the inhibitory subclass (Galphai) of Galpha subunits, and thus it is assumed that a Galphai.GoLoco motif protein complex plays a direct functional role in microtubule dynamics underlying spindle orientation and metaphase chromosomal segregation during cell division. To address this hypothesis directly, we rationally identified a point mutation to Galphai subunits that renders a selective loss-of-function for GoLoco motif binding, namely an asparagine-to-isoleucine substitution in the alphaD-alphaE loop of the Galpha helical domain. This GoLoco-insensitivity ("GLi") mutation prevented Galphai1 association with all human GoLoco motif proteins and abrogated interaction between the Caenorhabditis elegans Galpha subunit GOA-1 and the GPR-1 GoLoco motif. In contrast, the GLi mutation did not perturb any other biochemical or signaling properties of Galphai subunits, including nucleotide binding, intrinsic and RGS protein-accelerated GTP hydrolysis, and interactions with Gbetagamma dimers, adenylyl cyclase, and seven transmembrane-domain receptors. GoLoco insensitivity rendered Galphai subunits unable to recruit GoLoco motif proteins such as GPSM2/LGN and GPSM3 to the plasma membrane, and abrogated the exaggerated mitotic spindle rocking normally seen upon ectopic expression of wild type Galphai subunits in kidney epithelial cells. This GLi mutation should prove valuable in establishing the physiological roles of Galphai.GoLoco motif protein complexes in microtubule dynamics and spindle function during cell division as well as to delineate potential roles for GoLoco motifs in receptor-mediated signal transduction.  相似文献   

4.
GPSM2 (G-protein signalling modulator 2; also known as LGN or mammalian Pins) is a protein that regulates mitotic spindle organization and cell division. GPSM2 contains seven tetratricopeptide repeats (TPR) and four Galpha(i/o)-Loco (GoLoco) motifs. GPSM2 has guanine nucleotide dissociation inhibitor (GDI) activity towards both Galpha(o)- and Galpha(i)-subunits; however, a systematic analysis of its individual GoLoco motifs has not been described. We analyzed each of the four individual GoLoco motifs from GPSM2, assessing their relative binding affinities and GDI potencies for Galpha(i1), Galpha(i2), and Galpha(i3) and Galpha(o). Each of the four GPSM2 GoLoco motifs (36-43 amino acids in length) was expressed in bacteria as a GST-fusion protein and purified to homogeneity. The binding of each of the four GST-GoLoco motifs to Galpha(i1)-, Galpha(o)-, and Galpha(s)-subunits was assessed by surface plasmon resonance; all of the motifs bound Galpha(i1), but exhibited low affinity towards Galpha(o). GDI activity was assessed by a fluorescence-based nucleotide-binding assay, revealing that all four GoLoco motifs are functional as GDIs for Galpha(i1), Galpha(i2), and Galpha(i3). Consistent with our binding studies, the GDI activity of GPSM2 GoLoco motifs on Galpha(o) was significantly lower than that toward Galpha(i1), suggesting that the in vivo targets of GPSM2 are most likely to be Galpha(i)-subunits.  相似文献   

5.
Members of the regulators of G protein signaling (RGS) family modulate Galpha-directed signals as a result of the GTPase-activating protein (GAP) activity of their conserved RGS domain. In addition to its RGS domain, RGS14 contains a Rap binding domain (RBD) and a GoLoco motif. To define the cellular and biochemical properties of RGS14 we utilized two different affinity purified antisera that specifically recognize recombinant and native RGS14. In brain, we observed two RGS14-like immunoreactive bands of distinct size (60 kDa and 55 kDa). Both forms are present in brain cytosol and in two, biochemically distinct, membrane subpopulations: one detergent-extractable and the other detergent-insensitive. Recombinant RGS14 binds specifically to activated Galphai/o, but not Galphaq/11, Galpha12/13, or Galphas in brain membranes. In reconstitution studies, we found that RGS14 is a non-selective GAP for Galphai1 and Galphao and that full-length RGS14 is an approximately 10-fold more potent stimulator of Galpha GTPase activity than the RGS domain alone. In contrast, neither full-length RGS14 nor the isolated RBD domain is a GAP for Rap1. RGS14 is also a highly selective guanine nucleotide dissociation inhibitor (GDI) for Galphai but not Galphao, and this activity is restricted to the C-terminus containing the GoLoco domain. These findings highlight previously unknown biochemical properties of RGS14 in brain, and provide one of the first examples of an RGS protein that is a bifunctional regulator of Galpha actions.  相似文献   

6.
Multiple isoforms of inhibitory Galpha-subunits (Galphai1,2,3, as well as Galphao) are present within the heart, and their role in modulating pacemaker function remains unresolved. Do inhibitory Galpha-subunits selectively modulate parasympathetic heart rate responses? Published findings using a variety of experimental approaches have implicated roles for Galphai2, Galphai3, and Galphao in parasympathetic signal transduction. We have compared in vivo different groups of mice with global genetic deletion of Gialpha1/Galphai3, Galphai2, and Galphao against littermate controls using implanted ECG telemetry. Significant resting tachycardia was observed in Galphai2(-/-) and Galphao(-/-) mice compared with control and Galphai1(-/-)/Galphai3(-/-) mice (P < 0.05). Loss of diurnal heart rate variation was seen exclusively in Galphao(-/-) mice. Using heart rate variability (HRV) analysis, compared with littermate controls (4.02 ms2 +/- 1.17; n = 6, Galphai2(-/-)) mice have a selective attenuation of high-frequency (HF) power (0.73 ms2 +/- 0.31; n = 5, P < 0.05). Galphai1(-/-)/Galphai3(-/-) and Galphao(-/-) cohorts have nonsignificant changes in HF power. Galphao(-/-) mice have a different basal HRV signature. The observed HRV phenotype in Galphai2(-/-) mice was qualitatively similar to atropine (1 mg/kg)-treated controls [and mice treated with the GIRK channel blocker tertiapinQ (0.05 mg/kg)]. Maximal cardioinhibitory response to the M(2)-receptor agonist carbachol (0.5 mg/kg) compared with basal heart rate was attenuated in Galphai2(-/-) mice (0.08 +/- 0.04; n = 6) compared to control (0.27 +/- 0.04; n = 7 P < 0.05). Our data suggest a selective defect of parasympathetic heart rate modulation in mice with Galphai2 deletion. Mice with Galphao deletion also have a defect in short-term heart rate dynamics, but this is qualitatively different to the effects of atropine, tertiapinQ, and Galphai2 deletion. In contrast, Galphai1 and Galphai3 do not appear to be essential for parasympathetic responses in vivo.  相似文献   

7.
The GoLoco motif is a short polypeptide sequence found in G-protein signaling regulators such as regulator of G-protein signaling proteins type 12 and 14 and activator of G-protein signaling protein type 3. A unique property of the GoLoco motifs from these three proteins is their preferential interaction with guanosine diphosphate (GDP)-bound Galpha(i1), Galpha(i3) and, sometimes, Galpha(i2) subunits over Galpha(o) subunits. This interaction prevents both spontaneous guanine nucleotide release and reassociation of Galpha(i)-GDP with Gbetagamma. We utilized this property of the GoLoco motif to examine dopamine (D2 and D3) and somatostatin receptor coupling to G-protein-regulated inwardly rectifying potassium (GIRK) channels in mouse AtT20 cells. GoLoco motif peptides had no effect on either basal channel activity or the initial responses to agonists, suggesting that the GoLoco motif cannot disrupt pre-formed G-protein heterotrimers. GoLoco motif peptides did, however, interfere with human D2((short)) receptor coupling to GIRK channels as demonstrated by the progressively diminished responses after repeated agonist application. This behavior is consistent with some form of compartmentalization of D2 receptors and GIRK channels such that Gbetagamma subunits, freed by local receptor activation and prevented from reforming a heterotrimeric complex, are not functionally constrained within the receptor-channel complex and thus are unable to exert a persistent activating effect. In contrast, GoLoco motif peptides had no effect on either D3 or somatostatin coupling to GIRK channels. Our results suggest that GoLoco motif-based peptides will be useful tools in examining the specificity of G-protein-coupled receptor-effector coupling.  相似文献   

8.
The regulators of G-protein signaling (RGS) proteins accelerate the intrinsic guanosine triphosphatase activity of heterotrimeric G-protein alpha subunits and are thus recognized as key modulators of G-protein-coupled receptor signaling. RGS12 and RGS14 contain not only the hallmark RGS box responsible for GTPase-accelerating activity but also a single G alpha(i/o)-Loco (GoLoco) motif predicted to represent a second G alpha interaction site. Here, we describe functional characterization of the GoLoco motif regions of RGS12 and RGS14. Both regions interact exclusively with G alpha(i1), G alpha(i2), and G alpha(i3) in their GDP-bound forms. In GTP gamma S binding assays, both regions exhibit guanine nucleotide dissociation inhibitor (GDI) activity, inhibiting the rate of exchange of GDP for GTP by G alpha(i1). Both regions also stabilize G alpha(i1) in its GDP-bound form, inhibiting the increase in intrinsic tryptophan fluorescence stimulated by AlF(4)(-). Our results indicate that both RGS12 and RGS14 harbor two distinctly different G alpha interaction sites: a previously recognized N-terminal RGS box possessing G alpha(i/o) GAP activity and a C-terminal GoLoco region exhibiting G alpha(i) GDI activity. The presence of two, independent G alpha interaction sites suggests that RGS12 and RGS14 participate in a complex coordination of G-protein signaling beyond simple G alpha GAP activity.  相似文献   

9.
GAIP is a regulator of G protein signaling (RGS) that accelerates the rate of GTP hydrolysis by some G protein alpha subunits. In the present studies, we have examined the structural basis for the ability of GAIP to discriminate among members of the Galphai family. Galphai1, Galphai3, and Galphao interacted strongly with GAIP, whereas Galphai2 interacted weakly and Galphas did not interact at all. A chimeric G protein composed of a Galphai2 N terminus and a Galphai1 C terminus interacted as strongly with GAIP as native Galphai1, whereas a chimeric N-terminal Galphai1 with a Galphai2 C terminus did not interact. These results suggest that the determinants responsible for GAIP selectivity between these two Galphais reside within the C-terminal GTPase domain of the G protein. To further localize residues contributing to G protein-GAIP selectivity, a panel of 15 site-directed Galphai1 and Galphai2 mutants were assayed. Of the Galphai1 mutants tested, only that containing a mutation at aspartate 229 located at the N terminus of Switch 3 did not interact with GAIP. Furthermore, the only Galphai2 variant that interacted strongly with GAIP contained a replacement of the corresponding Galphai2 Switch 3 residue (Ala230) with aspartate. To determine whether GAIP showed functional preferences for Galpha subunits that correlate with the binding data, the ability of GAIP to enhance the GTPase activity of purified alpha subunits was tested. GAIP catalyzed a 3-5-fold increase in the rate of GTP hydrolysis by Galphai1 and Galphai2(A230D) but no increase in the rate of Galphai2 and less than a 2-fold increase in the rate of Galphai1(D229A) under the same conditions. Thus, GAIP was able to discriminate between Galphai1 and Galphai2 in both binding and functional assays, and in both cases residue 229/230 played a critical role in selective recognition.  相似文献   

10.
Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) that contains four G protein regulatory (GPR) or GoLoco motifs in its C-terminal domain. The entire C-terminal domain (AGS3-C) as well as certain peptides corresponding to individual GPR motifs of AGS3 bound to G alpha i1 and inhibited the binding of GTP by stabilizing the GDP-bound conformation of G alpha i1. The stoichiometry, free energy, enthalpy, and dissociation constant for binding of AGS3-C to G alpha i1 were determined using isothermal titration calorimetry. AGS3-C possesses two apparent high affinity (Kd approximately 20 nm) and two apparent low affinity (Kd approximately 300 nm) binding sites for G alpha i1. Upon deletion of the C-terminal GPR motif from AGS3-C, the remaining sites were approximately equivalent with respect to their affinity (Kd approximately 400 nm) for G alpha i1. Peptides corresponding to each of the four GPR motifs of AGS3 (referred to as GPR1, GPR2, GPR3, and GPR4, respectively, going from N to C terminus) bound to G alpha i1 with Kd values in the range of 1-8 microm. Although GPR1, GPR2, and GPR4 inhibited the binding of the fluorescent GTP analog BODIPY-FL-guanosine 5'-3-O-(thio)triphosphate to G alpha i1, GPR3 did not. However, addition of N- and C-terminal flanking residues to the GPR3 GoLoco core increased its affinity for G alpha i1 and conferred GDI activity similar to that of AGS3-C itself. Similar increases were observed for extended GPR2 and extended GPR1 peptides. Thus, while the tertiary structure of AGS3 may affect the affinity and activity of the GPR motifs contained within its sequence, residues outside of the GPR motifs strongly potentiate their binding and GDI activity toward G alpha i1 even though the amino acid sequences of these residues are not conserved among the GPR repeats.  相似文献   

11.
Previous studies have shown that a single G protein-coupled receptor can regulate different effector systems by signaling through multiple subtypes of heterotrimeric G proteins. In LD2S fibroblast cells, the dopamine D2S receptor couples to pertussis toxin (PTX)-sensitive Gi/Go proteins to inhibit forskolin- or prostaglandin E1-stimulated cAMP production and to stimulate calcium mobilization. To analyze the role of distinct Galphai/o protein subtypes, LD2S cells were stably transfected with a series of PTX-insensitive Galphai/o protein Cys --> Ser point mutants and assayed for D2S receptor signaling after PTX treatment. The level of expression of the transfected Galpha mutant subunits was similar to the endogenous level of the most abundant Galphai/o proteins (Galphao, Galphai3). D2S receptor-mediated inhibition of forskolin-stimulated cAMP production was retained only in clones expressing mutant Galphai2. In contrast, the D2S receptor utilized Galphai3 to inhibit PGE1-induced (Gs-coupled) enhancement of cAMP production. Following stable or transient transfection, no single or pair set of mutant Galphai/o subtypes rescued the D2S-mediated calcium response following PTX pretreatment. On the other hand, in LD2S cells stably transfected with GRK-CT, a receptor kinase fragment that specifically antagonizes Gbeta gamma subunit activity, D2S receptor-mediated calcium mobilization was blocked. The observed specificity of Galphai2 and Galphai3 for different states of adenylyl cyclase activation suggests a higher level of specificity for interaction of Galphai subunits with forskolin- versus Gs-activated states of adenylyl cyclase than has been previously appreciated.  相似文献   

12.
13.
The true function of Merkel cells (MCs) is still enigmatic, though the localization of various kinds of neurotransmitter-like substances in MCs has been revealed by immunohistochemistry. Most of the neurotransmitters act on target cells via seven-transmembrane receptors coupled to heterotrimeric G proteins. The heterotrimeric G proteins include various subfamilies that contribute to different signal transduction pathways. Therefore investigation of specific types of G proteins in MCs and related axon terminals (MC-axon terminals) should contribute to the elucidation of the function of MCs. In this study, we investigated the expression patterns of alpha-subunit isoforms of G proteins in MC-neurite complexes of the rat and monkey by enzymatic and fluorescence immunohistochemistry. MC-axon terminals of the rat and monkey showed positive immunoreactions of Galphao and Galphai1. Those of the monkey also showed a weak immunoreaction of Galphas. On the other hand, MCs of both animals showed positive immunoreactions of Galphao, Galphai1, Galphaq, and Galphaz. In addition, MCs of the monkey showed weak immunoreactions of Galphas. Galphao- and Galphai1-like immunoreactions in the MC-axon terminals suggest that MCs suppressively regulate receptive functions of type I mechanosensory nerve terminals. On the other hand, the localization of Galpha-subunits in MCs suggests that these cells are regulated with hormones, neurotransmitter-like substances, or growth factors.  相似文献   

14.
GoLoco motif proteins bind to the inhibitory G(i) subclass of G-protein α subunits and slow the release of bound GDP; this interaction is considered critical to asymmetric cell division and neuro-epithelium and epithelial progenitor differentiation. To provide protein tools for interrogating the precise cellular role(s) of GoLoco motif/Gα(i) complexes, we have employed structure-based protein design strategies to predict gain-of-function mutations that increase GoLoco motif binding affinity. Here, we describe fluorescence polarization and isothermal titration calorimetry measurements showing three predicted Gα(i1) point mutations, E116L, Q147L, and E245L; each increases affinity for multiple GoLoco motifs. A component of this affinity enhancement results from a decreased rate of dissociation between the Gα mutants and GoLoco motifs. For Gα(i1)(Q147L), affinity enhancement was seen to be driven by favorable changes in binding enthalpy, despite reduced contributions from binding entropy. The crystal structure of Gα(i1)(Q147L) bound to the RGS14 GoLoco motif revealed disorder among three peptide residues surrounding a well defined Leu-147 side chain. Monte Carlo simulations of the peptide in this region showed a sampling of multiple backbone conformations in contrast to the wild-type complex. We conclude that mutation of Glu-147 to leucine creates a hydrophobic surface favorably buried upon GoLoco peptide binding, yet the hydrophobic Leu-147 also promotes flexibility among residues 511-513 of the RGS14 GoLoco peptide.  相似文献   

15.
Regulators of G protein signaling (RGS proteins) modulate Galpha-directed signals because of the GTPase activating protein (GAP) activity of their conserved RGS domain. RGS14 and RGS12 are unique among RGS proteins in that they also regulate Galpha(i) signals because of the guanine nucleotide dissociation inhibitor (GDI) activity of a GoLoco motif near their carboxy-termini. Little is known about cellular regulation of RGS proteins, although several are phosphorylated in response to G-protein directed signals. Here we show for the first time the phosphorylation of native and recombinant RGS14 in host cells. Direct stimulation of adenylyl cyclase or introduction of dibutyryl-cAMP induces phosphorylation of RGS14 in cells. This phosphorylation occurs through activation of cAMP-dependent protein kinase (PKA) since phosphate incorporation is completely blocked by a selective inhibitor of PKA but only partially or not at all blocked by inhibitors of other G-protein regulated kinases. We show that purified PKA phosphorylates two specific sites on recombinant RGS14, one of which, threonine 494 (Thr494), is immediately adjacent to the GoLoco motif. Because of this proximity, we focused on the possible effects of PKA phosphorylation on the GDI activity of RGS14. We found that mimicking phosphorylation on Thr494 enhanced the GDI activity of RGS14 toward Galpha(i) nearly 3-fold, with no associated effect on the GAP activity toward either Galpha(i) or Galpha(o). These findings implicate cAMP-induced phosphorylation as an important modulator of RGS14 function since phosphorylation could enhance RGS14 binding to Galpha(i)-GDP, thereby limiting Galpha(i) interactions with downstream effector(s) and/or enhancing Gbetagamma-dependent signals.  相似文献   

16.
Asymmetric division of Drosophila neuroblasts (NBs) and the Caenorhabditis elegans zygote uses polarity cues provided by the Par proteins, as well as heterotrimeric G-protein-signalling that is activated by a receptor-independent mechanism mediated by GoLoco/GPR motif proteins. Another key component of this non-canonical G-protein activation mechanism is a non-receptor guanine nucleotide-exchange factor (GEF) for Galpha, RIC-8, which has recently been characterized in C. elegans and in mammals. We show here that the Drosophila Ric-8 homologue is required for asymmetric division of both NBs and pl cells. Ric-8 is necessary for membrane targeting of Galphai, Pins and Gbeta13F, presumably by regulating multiple Galpha subunit(s). Ric-8 forms an in vivo complex with Galphai and interacts preferentially with GDP-Galphai, which is consistent with Ric-8 acting as a GEF for Galphai. Comparisons of the phenotypes of Galphai, Ric-8, Gbeta13Fsingle and Ric-8;Gbeta13F double loss-of-function mutants indicate that, in NBs, Ric-8 positively regulates Gai activity. In addition, Gbetagamma acts to restrict Galphai (and GoLoco proteins) to the apical cortex, where Galphai (and Pins) can mediate asymmetric spindle geometry.  相似文献   

17.
The heterotrimeric G protein Galphao is ubiquitously expressed throughout the central nervous system, but many of its functions remain to be defined. To search for novel proteins that interact with Galphao, a mouse brain library was screened using the yeast two-hybrid interaction system. Pcp2 (Purkinje cell protein-2) was identified as a partner for Galphao in this system. Pcp2 is expressed in cerebellar Purkinje cells and retinal bipolar neurons, two locations where Galphao is also expressed. Pcp2 was first identified as a candidate gene to explain Purkinje cell degeneration in pcd mice (Nordquist, D. T., Kozak, C. A., and Orr, H. T. (1988) J. Neurosci. 8, 4780-4789), but its function remains unknown as Pcp2 knockout mice are normal (Mohn, A. R., Feddersen, R. M., Nguyen, M. S., and Koller, B. H. (1997) Mol. Cell. Neurosci. 9, 63-76). Galphao and Pcp2 binding was confirmed in vitro using glutathione S-transferase-Pcp2 fusion proteins and in vitro translated [35S]methionine-labeled Galphao. In addition, when Galphao and Pcp2 were cotransfected into COS cells, Galphao was detected in immunoprecipitates of Pcp2. To determine whether Pcp2 could modulate Galphao function, kinetic constants kcat and koff of bovine brain Galphao were determined in the presence and absence of Pcp2. Pcp2 stimulates GDP release from Galphao more than 5-fold without affecting kcat. These findings define a novel nucleotide exchange function for Pcp2 and suggest that the interaction between Pcp2 and Galphao is important to Purkinje cell function.  相似文献   

18.
Proteins containing G-protein regulatory (GPR) motifs represent a novel family of guanine nucleotide dissociation inhibitors (GDIs) for G(alpha) subunits from the Gi family. They selectively interact with the GDP-bound conformation of Gi(alpha) and transducin-alpha (Gt(alpha)), but not with Gs(alpha). A series of chimeric proteins between Gi(alpha)(1) and Gs(alpha) has been constructed to investigate GPR-contact sites on G(alpha) subunits and the mechanism of GPR-protein GDI activity. Analysis of the interaction of two GPR-proteins-AGS3GPR and Pcp2-with the chimeric G(alpha) subunits demonstrated that the GPR-Gi(alpha)(1) interface involves the Gi(alpha)(1) switch regions and Gi(alpha)(1)-144-151, a site within the helical domain. Residues within Gi(alpha)(1)-144-151 form conformation-sensitive contacts with switch III, and may directly interact with a GPR-protein or form a GPR-binding surface jointly with switch III. The helical domain site is critical to the ability of GPR-proteins to act as GDIs. Our data suggest that a mechanism of the GDI activity of GPR-proteins is different from that of GDIs for monomeric GTPases and from the GDI-like activity of G(betagamma) subunits. The GPR-proteins are likely to block a GDP-escape route on G(alpha) subunits.  相似文献   

19.
Regulation of the assembly and function of G-protein heterotrimers (Gα·GDP/Gβγ) is a complex process involving the participation of many accessory proteins. One of these regulators, GPSM3, is a member of a family of proteins containing one or more copies of a small regulatory motif known as the GoLoco (or GPR) motif. Although GPSM3 is known to bind Gα(i)·GDP subunits via its GoLoco motifs, here we report that GPSM3 also interacts with the Gβ subunits Gβ1 to Gβ4, independent of Gγ or Gα·GDP subunit interactions. Bimolecular fluorescence complementation studies suggest that the Gβ-GPSM3 complex is formed at, and transits through, the Golgi apparatus and also exists as a soluble complex in the cytoplasm. GPSM3 and Gβ co-localize endogenously in THP-1 cells at the plasma membrane and in a juxtanuclear compartment. We provide evidence that GPSM3 increases Gβ stability until formation of the Gβγ dimer, including association of the Gβ-GPSM3 complex with phosducin-like protein PhLP and T-complex protein 1 subunit eta (CCT7), two known chaperones of neosynthesized Gβ subunits. The Gβ interaction site within GPSM3 was mapped to a leucine-rich region proximal to the N-terminal side of its first GoLoco motif. Both Gβ and Gα(i)·GDP binding events are required for GPSM3 activity in inhibiting phospholipase-Cβ activation. GPSM3 is also shown in THP-1 cells to be important for Akt activation, a known Gβγ-dependent pathway. Discovery of a Gβ/GPSM3 interaction, independent of Gα·GDP and Gγ involvement, adds to the combinatorial complexity of the role of GPSM3 in heterotrimeric G-protein regulation.  相似文献   

20.
Secretory vesicles store neurotransmitters that are released by exocytosis. Their membrane contains transporters responsible for transmitter loading that are driven by an electrochemical proton gradient across the vesicle membrane. We have now examined whether uptake of noradrenaline is regulated by heterotrimeric G proteins. In streptolysin O-permeabilized PC 12 cells, GTP-analogues and AlF4- inhibited noradrenaline uptake, an effect that was sensitive to treatment with pertussis toxin. Inhibition of uptake was prevented by Galphao-specific antibodies and mimicked by purified activated Galphao2. No effect was seen when Galphao2 in its inactive GDP-bound form or purified activated Galphao1, Galphai1 and Galphai2 were tested. Down-regulation of uptake remained unchanged when exocytosis was inhibited by the light chain of tetanus toxin. Vesicular acidification was not affected whereas binding of [3H]reserpine was reduced by GTPgammaS and Galphao2. These data suggest that the monoamine transporter rather than the vacuolar ATPase is affected. We conclude that catecholamine uptake is controlled by Galphao2, suggesting a novel function for heterotrimeric G proteins in the control of neurotransmitter storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号