首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
DNA sequence for the T7 RNA polymerase promoter for T7 RNA species II   总被引:2,自引:0,他引:2  
The DNA sequence for the T7 late region class III promoter for T7 RNA species II has been determined. I have found that the DNA sequence for this promoter presented in an earlier report (Oakley et al., 1979) is incorrect and that this class III promoter contains a 23 base-pair sequence identical to those present in all other T7 class III promoters (Rosa, 1979). The T7 RNA species II promoter has been located at 68% on the T7 genome.  相似文献   

2.
Tang GQ  Patel SS 《Biochemistry》2006,45(15):4947-4956
To form a functional open complex, bacteriophage T7 RNA polymerase (RNAP) binds to its promoter DNA and induces DNA bending and opening. The objective of this study was to elucidate the temporal coupling in DNA binding, bending, and opening processes that occur during initiation. For this purpose, we conducted a combined measurement of stopped-flow fluorescence anisotropy, fluorescence resonance energy transfer (FRET), and 2-aminopurine fluorescence. Stopped-flow anisotropy measurements provided direct evidence of an intermediate resulting from rapid binding of the promoter to T7 RNA polymerase. Stopped-flow FRET measurements showed that promoter bending occurred at a rate constant that was slower than the initial DNA binding rate constant, indicating that the initial complex was not significantly bent. Similarly, stopped-flow 2-aminopurine fluorescence changes showed that promoter opening occurred at a rate constant that was slower than the initial DNA binding rate constant, indicating that the initial complex was not significantly melted. The indistinguishable observed rate constants of FRET and 2-aminopurine fluorescence changes indicate that DNA bending and opening processes are temporally coupled and these DNA conformational changes take place after the DNA binding step. The results in this paper are consistent with the mechanism in which the initial binding of T7 RNAP to the promoter results in a closed complex, which is then converted into an open complex in which the promoter is both sharply bent and melted.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The interactions of T7 RNA polymerase with its promoter DNA have been previously probed in footprinting experiments with either DNase I or (methidiumpropyl-EDTA)-Fe(II) to cleave unprotected DNA [Basu, S., & Maitra, U. (1986) J. Mol. Biol. 190, 425-437. Ikeda, R. A., & Richardson, C. C. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3614-3618]. Both of these reagents have drawbacks; DNase I is a bulky reagent and so provides low resolution, and (methidiumpropyl-EDTA)-Fe(II) intercalates into DNA and is therefore biased toward cleavage of double-stranded DNA. In this study, the interaction between the polymerase and the promoter has been probed with Fe(II)-EDTA. This reagent generates reactive hydroxyl radicals free in solution, which produces a more detailed picture of the polymerase-promoter complex. Two protected regions are observed on each of the two promoter DNA strands: from position -17 to position -13 and from position -7 to position -1 on the coding strand and from position -14 to position -9 and from position -3 to position +2 on the noncoding strand. From this pattern it is clear that if recognition occurs via double-stranded B-form DNA, then the protected regions lie on one face of the DNA helix, and therefore the enzyme must interact predominantly from one side of the DNA helix. Digestion of the DNA in a polymerase-promoter complex with a single-strand-specific endonuclease shows that a small region of the noncoding strand near position -5 is susceptible to cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
12.
Sousa R 《Uirusu》2001,51(1):81-94
  相似文献   

13.
14.
A mutant T7 RNA polymerase as a DNA polymerase.   总被引:11,自引:1,他引:11       下载免费PDF全文
R Sousa  R Padilla 《The EMBO journal》1995,14(18):4609-4621
  相似文献   

15.
16.
17.
18.
19.
The 50-residue major coat protein (MCP) of Ff bacteriophage exists as a single-spanning membrane protein in the Escherichia coli host inner membrane prior to assembly into lipid-free virions. Here, the molecular bases for the specificity and stoichiometry that govern the protein-protein interactions of MCP in the host membrane are investigated in detergent micelles. To address these structural issues, as well as to circumvent viability requirements in mutants of the intact protein, peptides corresponding to the effective alpha-helical TM segment of wild-type and mutant bacteriophage MCPs were synthesized. Fluorescence resonance energy transfer (FRET) experiments on the dansyl and dabcyl-labeled MCP TM domain peptides in detergent micelles demonstrated that the peptides specifically associate into non-covalent homodimers, as postulated for the biologically relevant membrane-embedded MCP oligomer. MCP peptides labeled with short-range pyrene fluorophores at the N terminus displayed excimer fluorescence consistent with homodimerization occurring in a parallel fashion. Variant peptides synthesized with single substitutions at helix-interactive positions displayed a wide range of dimer/monomer ratios on SDS-PAGE gels, which are interpreted in terms of steric volume, presence or absence of beta-branching, and the effect of polar substituents. The overall results indicate discrete roles for helix-helix interfacial residues as packing recognition elements in the membrane-inserted state, and suggest a possible correlation between phage viability and efficacy of MCP TM-TM interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号