首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apical root meristems and segments of root elongation zone were sampled from 4- to 5-day-old Zea mays L. seedlings. The vacuolar ATPase and pyrophosphatase, the tonoplast marker enzymes, and the tonoplast -, -, and -aquaporins were visualized by means of indirect immunofluorescent microscopy with the use of the respective antibodies. Following cell plasmolysis (700 mM mannitol, 2.5 h), the vacuolar ATPase and pyrophosphatase were detected in cell wall pores where plasmodesmata remained detached from the plasmolyzed protoplasts. This finding provides further evidence for existence of the vacuolar symplast in the elongation zone of maize root, which may ensure intercellular continuity of plant tissues. The pulsed NMR method was used to study the self-diffusion of water molecules. The diffusive decay in the root elongation zone was nonexponential, and it was transformed to three exponential terms with characteristic coefficients of self-diffusion; two of these coefficients (D 2 and D 3) characterize the water self-diffusion in the cytoplasmic and vacuolar symplasts of root, respectively. The root apical meristem was also investigated with NMR technique by virtue of paramagnetic doping of the apoplast. This approach allowed selective studying of water diffusion within the symplast compartments. Partial dehydration with PEG-6000, 12 and 20%, for 2.5 h and chemical stressors (ABA and salicylic acid, 0.1 mM, 24 h) were applied to modify water permeability of plasmodesmata and tonoplast aquaporins. The transcellular water permeability increased in the root meristem under the action of all stress factors. In the root elongation zone exposed to partial dehydration, the water exchange in the apoplast became the dominant component. Other stress factors affected water relations in different manners. ABA elevated the water permeability of the vacuolar symplast, in contrast to salicylic acid that decreased water conductance of both the cytoplasmic and vacuolar symplasts.  相似文献   

2.
Uptake experiments and efflux compartmental analyses of abscisic acid (ABA) with acid treated epidermal peels of Valerianella locusta were performed to elucidate the mechanisms of transport of ABA across the plasmalemma and tonoplast of guard cells. ABA uptake across the plasmalemma is linearly correlated with external ABA concentration in the incubation medium. Under alkaline conditions ABA-uptake was not significantly above background, indicating that ABA uptake occurs mainly by diffusion of undissociated ABAH as the most permeable species, which is trapped afterwards in the alkaline cytosol as impermeable ABA?. Efflux analysis of ABA revealed a saturable component of ABA transfer across the tonoplast. A Woolf-Augustinsson-Hofstee analysis suggested the existence of two transport systems for ABA at the tonoplast. The high affinity transport system had a KM of 0.21 mol m?3 and a Vmax 85.8 amol ABA cell?1 h?1. Using the data of the uptake and efflux experiments we calculated the permeability coefficients of ABA for the plasmalemma and the tonoplast of guard cells, which are 2.46 10?7 m s–1 and 1.26 10?8m s?1, respectively. The distribution of the pH-probe (14C)-DMO between medium, cytosol and vacuole was investigated and used to calculate cytosolic and vacuolar pH. The vacuolar pH is too low to explain the high vacuolar ABA concentration by trapping of ABA?, whereas the cytosol is sufficiently alkaline to act as an efficient anion trap. Therefore we conclude that ABA transport across the guard cell tonoplast is catalyzed by a saturable uptake component.  相似文献   

3.
Indirect immunofluorescent microscopy and a tonoplast-specific marker enzyme were used to demonstrate the occurrence of pyrophosphatase within the plasmodesmata in the elongation zone of maize root segments. The pulsed field gradient NMR method (PFG NMR) was applied to study restricted self-diffusion of water molecules in the root segments under normal conditions and after the inhibition of respiration with sodium azide (10 mM NaN3, 30 min). The results led to the conclusion that vacuoles in the root segments examined are interconnected into a unified intercellular continuum and that intervacuolar connections are formed by desmotubules within the plasmodesmata. The water permeability of the vacuolar symplast appears to be controlled by an ATP-dependent process. The experimental data can provide a methodological approach to studying water permeability of the vacuolar symplast with the PFG NMR technique.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 372–377.Original Russian Text Copyright © 2005 by Velikanov, Volobueva, Belova, Gaponenko.  相似文献   

4.
New concepts of structural-functional organization of the transport system in higher plants were evolved at the current stage of investigations. In addition to the classical (cytoplasmic) symplast, another supra-cellular continuum was supposed to exist in the plant tissue, which interconnects vacuoles of neighboring cells through desmotubules and represents the second transport pathway within the plasmodesmata. This study describes and experimentally validates the method for monitoring the self-diffusion of water molecules between vacuoles of contacting cells in the maize (Zea mays L.) root by means of NMR method with a pulsed magnetic field gradient. The method is based on the fact that, at long period of self-diffusion observation, when water molecules in the apoplast and cytoplasm had already completed their relaxation and did not contribute significantly to the proton echo signal, the slope of the initial portion of the diffusional decay is independent of water permeability of the vacuolar membrane and is determined exclusively by water permeability of intervacuolar pathway through the desmotubules.  相似文献   

5.
Using compartmental analysis, unidirectional fluxes of K+ and Na+ and their intracellular compartmentation in excised barley (Hordeum distichon L. cv. Kocher-perle) root segments have been measured during a steady state in the presence or absence of ABA. Almost all flux rates were altered in the presence of external ABA, in particular the xylem transport R’ and the plasmalemma influx Øoc (see below) were strongly inhibited in the steady state. At the same time the presence of ABA induced a strong increase in the vacuolar K+ and Na+ content Qv and a decrease in the cytoplasmic one (Qc). Since the fluxes of an ion and its vacuolar or, in particular, cytoplasmic concentrations are interrelated, the ratios of fluxes originating from the cytoplasm and the cytoplasmic ion content were taken into account. On this basis ABA had the following effects: a) the secretion of K+ or Na+ to the xylem vessels was drastically inhibited; b) the plasmalemma K+ or Na+ efflux Øco was moderately stimulated and c) the tonoplast influx Øcv of Na+ was stimulated, while the tonoplast influx of K+ appeared to be unchanged (the decrease in Øcv being due to the decreased cytoplasmic K+ content). By a similar argument, also the apparent inhibition of the plasmalemma influx Øoc of K+ and Na+ in the steady state merely is an indirect effect of ABA. It only reflects the strong ABA-induced decrease in the xylem transport, that governs the magnitude of Øoc in the steady state. The results are discussed with reference to possible regulatory functions of ABA. In this respect it is suggested that – in particular under conditions of stress – ABA might regulate cellular metabolic processes by changing the cytoplasmic K+ level.  相似文献   

6.
An NMR method with a pulsed magnetic field gradient was applied to study changes in water permeability of the vacuolar symplast in maize (Zea mays L.) seedling roots treated with various inhibitors of cell metabolism. The results were qualitatively analogous to literature data on conductivity changes of intercellular gap junctions in animal cells exposed to similar treatments. Electron microscopy examination of root cells provided evidence for the existence of membrane contacts between the endoplasmic reticulum and the tonoplast. It is supposed that vacuoles of neighboring plant cells are interconnected through highly dynamical gap junctions between the tonoplast and the endoplasmic reticulum membrane.  相似文献   

7.
Water loss from plants is determined by the aperture of stomatal pores in the leaf epidermis, set by the level of vacuolar accumulation of potassium salt, and hence volume and turgor, of a pair of guard cells. Regulation of ion fluxes across the tonoplast, the key to regulation of stomatal aperture, can only be studied by tracer flux measurements. There are two transport systems in the tonoplast. The first is a Ca2+-activated channel, inhibited by phenylarsine oxide (PAO), responsible for the release of vacuolar K+(Rb+) in response to the “drought” hormone, abscisic acid (ABA). This channel is sensitive to pressure, down-regulated at low turgor and up-regulated at high turgor, providing a system for turgor regulation. ABA induces a transient stimulation of vacuolar ion efflux, during which the flux tracks the ion content (volume, turgor), suggesting ABA reduces the set-point of a control system. The second system, which is PAO-insensitive, is responsible for an ion flux from vacuole to cytoplasm associated with inward water flow following a hypo-osmotic transfer. It is suggested that this involves an aquaporin as sensor, and perhaps also as responder; deformation of the aquaporin may render it ion-permeable, or, alternatively, the deformed aquaporin may signal to an associated ion channel, activating it. Treatment with inhibitors of aquaporins, HgCl2 or silver sulfadiazine, produces a large transient increase in ion release from the vacuole, also PAO-insensitive. It is suggested that this involves the same aquaporin, either rendered directly ion-permeable, or signalling to activate an associated ion channel.  相似文献   

8.
Abstract Using the method of compartmental analysis, the ion fluxes and compartment concentrations of Ca2+, K+ and Cl- have been compared in the untreated vegetative frond and the abscisic acid (ABA) induced turion of Spirodela polyrrhiza. The ABA-induced turion is characterized by reduced Ca2+ exchange across the tonoplast and low vacuolar Ca2+ concentration relative to the vegetative frond. In addition the turion exhibits a higher plasmalemma flux with a correspondingly high Ca2+ concentration in the cytoplasm. The concentration of K+ and Cl- is much lower in the cytoplasm of the ABA-induced turion than in the vegetative frond with the influx/efflux ratio at both the plasmalemma and the tonoplast being less than 1, a finding exhibited also in dormant storage tissue. Treatment of vegetative fronds with ABA for 18 h resulted in a reduced K+ plasmalemma efflux relative to untreated vegetative fronds and a concomitant increase in the cytoplasmic concentration. There was no rapid effect of ABA on Ca2+, K+ or Cl- fluxes through either membrane. These results are consistent with the notion that drastic changes in ion fluxes and concentrations in the turion are a secondary consequence of ABA-induced development, possibly due to prior regulation by ABA of enzymes inherent to processes involved in membrane transport.  相似文献   

9.
Bafilomycin A1, known as an inhibitor of vacuolar type H+-ATPase, was used to study involvement of the vacuolar ATP-dependent H+-pump in the vacuolar pH regulation in a fresh water charophyte, Chara corallina. When bafilomycin A1 (100 nM) was externally given to intact cells, the vacuolar pH (about 5) was not affected. Internodal cells were then pretreated with 100 nM bafilomycin for 1 ? 2 h and the vacuolar sap was replaced with a weakly buffered solution of pH 7.4. The readjustment of the modified vacuolar pH in bafilomycin-treated cells was significantly retarded compared with that in untreated cells. Next, bafilomycin A1 was directly introduced into the vacuole by vacuolar perfusion with the artificial cell sap of pH 7.4. At 100 nM bafilomycin A1, the decrease in the vacuolar pH was significantly inhibited. When cell sap was replaced with the artificial cell sap containing no buffer (pH 5.2 ? 5.5), the vacuolar pH increased in the presence of vacuolar bafilomycin, suggesting that the PP1- dependent H+ pumping alone was not sufficient for the pH regulation of Chara vacuoles. Intracellular bafilomycin A1 had no effect on the plasma membrane potential of tonoplast-free cells, which is evidence that it does not affect the electrogenic H+-pump in the plasma membrane. Bafilomycin A1 inhibited the ATP-dependent H+ transport of tonoplast vesicles but not the PP1-dependent H+ transport. The ATPase activity of tonoplast vesicles was also inhibited by bafilomycin A1.  相似文献   

10.
Summary The effect of the concentration of the central vacuolar sap on water permeability previously demonstrated onNitella internode (Tazawa and Kamiya 1966), has been further studied. By using a technique of vacuole perfusion the ionic concentration of the cell sap has been modified independently of its tonicity. Transcellular water permeability has been measured by means of a double-chamber osmometer.When the tonicities of artificial saps were adjusted to that of the natural cell sap, wide variations in the concentration of K+, Na+, or Ca++ in the vacuole did not bring about any change in the magnitude of water permeability. On the other hand, water permeability was strongly influenced by varying the tonicity of the vacuolar medium by addition of mannitol. It increased when the tonicity was lowered from the normal level, while it decreased when tonicity was heightened. Water permeability was also decreased by increase in the tonicity of the external medium.Analysis of the results showed that the specific resistance to water flow across the plasmalemma and the tonoplast in series (the reciprocal of the water permeability kp) was related to the osmotic pressures of the intracellular ( i) and the extracellular ( 0) medium by the empirical formula, l/kp=0.088 + 0.015 . + 0.0074 0. Thus, intra- and extracellular tonicities influence the water permeability of theNitella internode independently of each other. The decrease in water permeability by increase in tonicity of the intra- or extracellular medium may be explained in terms of the effect of these tonicities on hydration of the cell membranes.The water permeability ofLamprothamnium, a brackish water Characeae was only one fourth that ofNitella, a fresh water Characeae. The lower permeability inLamprothamnium may be accounted for in terms of the high tonicities of its cell sap and external medium.  相似文献   

11.
Abscisic acid (ABA) induces a transient stimulation of 86Rb+ efflux from isolated guard cells of Commelina communis L. The form of the efflux transients produced in suboptimal conditions (low concentrations of ABA and/or high external pH at which ABA will penetrate poorly) has been compared with the full transient. In suboptimal conditions the stimulation of efflux is both delayed and reduced. The pH-dependence of the delay before initiation of the efflux transient suggests that a threshold internal concentration of ABA is required. However in suboptimal conditions even when the threshold internal concentration is reached and a transient is triggered, the degree of stimulation is reduced, an effect which also appears to depend on internal ABA. It is suggested that the differences reflect activation of different numbers of tonoplast ion channels for release of vacuolar ions. By contrast, the same end-state seems to be reached in optimal and suboptimal conditions, but after different times. The relative efflux stimulation during the efflux transient tracks the declining ion content; both the peak and the end of the transient are reached at the same ion content, but at different times. It is suggested that this reflects an ABA-induced change in the set-point of a regulated ion channel which is sensitive to ion content, perhaps a stretch-activated channel. This effect is independent of external concentration in the range 0.1–10 µM, and pH 6 and pH 8 are equally effective, suggesting an external site of action. Thus the results suggest multiple actions of ABA, involving both internal and external receptors. Regulation of both tonoplast ion channels by internal ABA, and of a regulated channel responsive to ion content by external ABA are suggested.  相似文献   

12.
Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways.  相似文献   

13.
Summary The origins of the two peaks of the action potential inNitella flexilis were analyzed by inserting two microelectrodes. one into the vacuole and the other into the cytoplasm. It was unequivocally demonstrated that the rapid first peak was generated at the plasmalemma and the slow second peak at the tonoplast. MnCl2 applied in the external medium abolished the second, tonoplast, peak but not the first, plasmalemma, peak, MnCl2 also inhibited the cessation of the cytoplasmic streaming accompanying the action potential. CaCl2 added in MnCl2-containing medium recovered generation of the tonoplast action potential and the streaming cessation. Since it has been established that the cessation of cytoplasmic streaming on membrane excitation is caused by an increase in cytoplasmic free Ca2– (Williamson, R.E., Ashley, C.C., 1982.Nature (London) 296:647–651: Tominaga, Y., Shimmen, T., Tazawa, M., 1983,Protoplasma 116:75–77), it is suggested that the tonoplast action potential is also induced by an increase in cytoplasmic Ca2+ resulting from the plasmalemma excitation. When vacuolar Cl was replaced with SO 4 2 by vacuolar perfusion, the polarity of the second, slow peak was reversed from vacuolar positive to vacuolar negative with respect to the cytoplasm, supporting the previous report that the tonoplast action potential is caused by increase in Cl permeability (Kikuyama, M., Tazawa, M., 1976.J. Membrane Biol.29:95–110).  相似文献   

14.
Effect of abscisic acid on cell permeability in leaves ofIresine u allisi hort. and roots ofBeta vulgaris L. were examined. An increase of betacyanin leakage from leaf cells was shown by ABA at 10−4, 10−7 or 10−9 M concentrations in water solution at 25 °C. The efflux of batacyanin from tissues did not change during the joint action of ABA and PEG 1000. ABA could lower the betacyanin leakage fromIresine leaves and beet-root slices under severe osmotic stress, as was found by deplasmolysis. The results suggest that ABA elicits some alteration in density of tonoplast membranes under dehydration. Presented at the International Symposium “Plant Growth Regulators” held on June 18–22, 1984 at Liblice, Czechoslovakia.  相似文献   

15.
Large-scale preparation of highly purified tonoplast from cucumber (Cucumis sativus L.) roots was obtained after centrifugation of microsome pellet (10,000 – 80,000 g) on discontinuous sucrose density gradient (20, 28, 32 and 42 %). Lack of PEP carboxylase (cytosol marker) and cytochrome c oxidase (mitochondrial marker) together with a slight activity of VO4-ATPase (plasma membrane marker) and NADH-cytochrome c reductase (ER marker) in tonoplast preparation confirmed its high purity. Using latency of nitrate-inhibited ATPase and H+ pumping as criteria it was established that the majority of tonoplast vesicles were sealed and oriented right(cytoplasmic)-side-out. Strong acidification of the interior of vesicles observed at the presence of both, ATP and PPi, confirmed that obtained tonoplast contains two classes of proton pumps: V-ATPase and H+PPiase. To examine and characterise of proton-transport systems in tonoplast, the effect of various inhibitors on H+ pumping and hydrolytic activities of ATPase and PPiase were measured. ATP-dependent activities (H+ flux and ATP hydrolysis) were specifically decreased by nitrate and bafilomycin A1, whereas the PPiase activities were reduced in the presence of fluoride and Na+ ions. Both enzymes showed a similar sensitivity to DCCD and DES. The results of experiments with KCl and NaCl suggested that the vacuolar ATPase was stimulated by Cl, whereas the vacuolar Ppiase requires K+ ions for its activity.  相似文献   

16.
Nitraria tangutorum Bobr. is a typical halophyte with superior tolerance to salinity. However, little is known about its physiological adaptation mechanisms to the salt environment. In the present study, N. tangutorum seedlings were treated with different concentrations of NaCl (100, 200, 300 and 400 mmol L?1) combined with five levels of Ca2+ (0, 5, 10, 15 and 20 mmol L?1) to investigate the effects of salt stress and exogenous Ca2+ on Na+ compartmentalization and ion pump activities of tonoplast and plasma membrane (PM) in leaves. Na+ and Ca2+ treatments increased the fresh weight and dry weight of N. tangutorum seedlings. The absorption of Na+ in roots, stems and leaves was substantially increased with the increases of NaCl concentration, and Na+ was mainly accumulated in leaves. Exogenous Ca2+ reduced Na+ accumulation in roots but promoted Na+ accumulation in leaves. The absorption and transportation of Ca2+ in N. tangutorum seedlings were inhibited under NaCl treatments. Exogenous Ca2+ promoted Ca2+ accumulation in the plant. Na+ contents in apoplast and symplast of leaves were also significantly increased, and symplast was the main part of Na+ intracellular compartmentalization. The tonoplast H+-ATPase and H+-PPase activities were significantly promoted under salt stress (NaCl concentrations ≤300 mmol L?1). PM H+-ATPase activities gradually increased under salt stress (NaCl concentrations ≤200 mmol L?1) followed by decreases with NaCl concentration increasing. The tonoplast H+-ATPase, H+-PPase and PM H+-ATPase activities increased first with the increasing exogenous Ca2+ concentration, reached the maximums at 15 mmol L?1 Ca2+, and then decreased. The tonoplast and PM Ca2+-ATPase activities showed increasing trends with the increases of NaCl and Ca2+ concentration. These results suggested that certain concentrations of exogenous Ca2+ effectively enhanced ion pump activities of tonoplast and PM as well as promoted the intracellular Na+ compartmentalization to improve the salt tolerance of N. tangutorum.  相似文献   

17.
The vacuole occupies 25-95% of the plant cell volume and plays an essential role in maintaining cytoplasmic homeostasis of nutrients and ions. Recent patch-clamp studies identified ion channels and electrogenic pumps as pathways for the movement of ions and metabolites across the vacuolar membrane (tonoplast). At high cytoplasmic Ca2+ (>10-6 M) and negative potentials (inside the vacuole) non-selective channels of the `slow-vacuolar (SV)-type' were activated resulting in anion release or cation influx. In the present study these vacuolar channels were characterized pharmacologically by ion channel inhibitors. The cation-transport inhibitors Ba2+, TEA+ and amiloride caused only partial and reversible block of the `SV-type'channels, whereas anion-transport inhibitors strongly affected the vacuolar channels. Pyridoxalphosphate and the dimethylaminecarboxylate derivates anthracene-9-carboxylic acid and C 144 reversibly blocked the channels up to 70% and Zncl2 up to 95%. DIDS and SITS inhibited this channel irreversibly up to 95%. The block developed under a variety of experimental conditions using solutions containing combinations of permanent cations and anions. The DIDS binding site is located on the cytoplasmic surface of the tonoplast, as intravacuolar DIDS did not block the channels. DIDS concentrations in the micromolar range, efficient in blocking 70—80% of the `SV-type' channels did not significantly affect ATP-induced or pyrophosphate-induced proton-pumps. Stilbene derivatives may therefore be useful tools for studies on the substrate binding site on this vacuolar channel and for channel isolation.  相似文献   

18.
In roots of 5-6-day old seedlings of three cultivars of the winter wheat, varying in drought-resistance: Bezostaya 1 (low resistant), Mironovskaya 808 (resistant), and Albidum 114 (highly resistant) water permeability of two transport channels of plasmodesmata was studied at the action of cytochalasin B, which is known to inhibit polymerization of cytoskeleton actin filaments, by a pulse method of NMR, on the background of increasing water loss in the seedlings. It has been found that the registered coefficients of water self diffusion, two of which (D2 and D3) depend on the water permeability of different transport channels of plasmodesmata, differ in opposite directions. This may suggest that in roots of drought-resistant plants, after a moderate water loss, a diffusive water flow through the cytoplasmic symplast increases (demonstrated by an increase of D2), while that through the vacuolar symplast decreases (seen by an increase of D3). After a high water loss in seedlings, we noticed an even greater increase in water permeability of the cytoplasmic symplast, and a decrease in water permeability of the vacuolar symplast, however, in the roots of low resistant cultivars these changes were poorly expressed, if at all. Under stress-less conditions cytochalasin B would result in an increased water transport through the cytoplasmic channel of plasmodesmata due apparently to a destruction of their actin-myosin sphincters. Both weak and average degrees of water loss would strengthen the cytochalasin B exerted influence on plasmodesmal water conductance, that may testify to a synergetic action of these two factors. After a significant water loss this action was kept only partially, because the inhibitor, on blocking the cytoplasmic channel, did increase at the same time the effect of water stress, limiting water flows through the vacuolar symplast and, simultaneously, raising the water inflow to the apoplast.  相似文献   

19.
Cytoplasmic polyamines block the fast-activating vacuolar cation channel   总被引:9,自引:1,他引:8  
The fast-activating vacuolar (FV) channel dominates the electrical characteristics of the tonoplast at physiological free Ca2+ concentrations. Since polyamines are known to increase in plant cells in response to stress, the regulation of FV channels by polyamines was investigated. Patch-clamp measurements were performed on whole barley ( Hordeum vulgare ) mesophyll vacuoles and on excised tonoplast patches. The trivalent polyamine spermidine and the tetravalent polyamine spermine blocked FV channels with Kd≈ 100 μM and Kd≈ 5 μM, respectively. Increasing cytosolic and vacuolar Ca2+ had no effect on putrescine and spermidine binding to FV channels but slightly decreased the affinity for spermine. The inhibition of FV channels by all three polyamines was not voltage-dependent. This points to a different mode of binding compared to inward rectifier K+ channels and Ca2+-permeable glutamate receptor channels from animal cells, which show rectification due to a voltage-dependent block by polyamines. In plant cells, the common polyamines (putrescine, spermidine and spermine) are likely to mediate a salt stress-induced decrease of ion flux across the vacuolar membrane by blocking FV channels.  相似文献   

20.
Petioles of water‐sufficient intact Vicia faba L. plants were infused with 1 µm abscisic acid (ABA) to simulate the import of root‐source ABA. This protocol permitted quantitative ABA delivery, up to 300 pmol ABA over 60 min, to the leaf without ambiguities associated with perturbations in plant–water status. The ABA concentrations in whole‐leaf samples and in apoplastic sap increased with the amount infused; ABA degradation was not detected. The ABA concentration in apoplastic sap was consistent with uptake of imported ABA into the leaf symplast, but this interpretation is qualified. Our focus was quantitative cellular compartmentation of imported ABA in guard cells. Unlike when leaves are stressed, the guard‐cell symplast ABA content did not increase because of ABA infusion (P = 0·48; 3·0 ± 0·5 versus 4·0 ± 1·2 fg guard‐cell‐pair?1). However, the guard‐cell apoplast ABA content increased linearly (R2 = 0·98) from ?0·2 ± 0·5 to 3·1 ± 1·3 fg guard‐cell‐pair?1 (≈ 3·1 µm ) and was inversely related to leaf conductance (R2 = 0·82). Apparently, xylem ABA accumulates in the guard‐cell wall as a result of evaporation of the apoplast solution. This mechanism provides for integrating transpiration rate and ABA concentration in the xylem solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号