首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas hold-up (ɛg), sauter mean bubble diameter (d32) and oxygen transfer coefficient (kLa) were evaluated at four different alkane concentrations (0.05, 0.1, 0.3 and 0.5 vol.%) in water over the range of superficial gas velocity (ug) of (1.18–23.52) × 10−3 m/s at 25 °C in a laboratory-scale bubble column bioreactor. Immiscible hydrocarbons (n-decane, n-tridecane and n-hexadecane) were utilized in the experiments as impurity. A type of anionic surfactant was also employed in order to investigate the effect of addition of surfactant to organic-aqueous systems on sauter mean bubble diameter, gas hold-up and oxygen transfer coefficient. Influence of addition of alkanes on oxygen transfer coefficient and gas hold-up, was shown to be dependent on the superficial gas velocity. At superficial gas velocity below 0.5 × 10−3 m/s, addition of alkane in air–water medium has low influence on oxygen transfer coefficient and also gas hold-up, whereas; at higher gas velocities slight addition of alkane increases oxygen transfer coefficient and also gas hold-up. Increase in concentration of alkane resulted in increase in oxygen transfer coefficient and gas hold-up and roughly decrease in sauter mean bubble diameter, which was attributed to an increase in the coalescence-inhibiting tendency in the presence of surface contaminant molecules. Bubbles tend to become smaller with decreasing surface tension of hydrocarbon, thus, oxygen transfer coefficient increases due to increasing of specific gas–liquid interfacial area (a). Empirical correlations were proposed for evaluating gas hold-up as a function of sauter mean bubble diameter, superficial gas velocity and interfacial surface tension as well as evaluating Sherwood number as a function of Schmidt, Reynolds and Bond numbers.  相似文献   

2.

Key message

We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen.

Abstract

Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.
  相似文献   

3.
Initiation of deoxyribonucleic acid (DNA) synthesis by the avian myeloblastosis virus DNA polymerase was previously suggested to involve a ribonucleic acid (RNA) primer, the initial product being a DNA molecule joined by a phosphodiester bond to the RNA primer. The existence and nature of such an RNA-DNA joint was investigated by assaying for transfer of a 32P atom from an α-32P-deoxyribonucleotide to a 2′(3′)-ribonucleotide after alkaline hydrolysis of the polymerase product. Such a transfer was observed, but only from α-32P-deoxyadenosine triphosphate and only to 2′(3′)-adenosine monophosphate. This same transfer was observed in both the endogenous DNA polymerase reaction of purified virions and the reconstructed reaction of purified DNA polymerase plus purified 60 to 70S viral RNA. These results indicate a high level of specificity for the initiation process and support the idea of a low-molecular-weight initiator RNA as part of the 60 to 70S RNA complex.  相似文献   

4.
The gas phase holdup and mass transfer characteristics of carboxymethyl cellulose (CMC) solutions in a bubble column having a radial gas sparger have been determined and a new flow regime map has been proposed. The gas holdup increases with gas velocity in the bubbly flow regime, decreases in the churn-turbulent flow regime, and increases again in the slug flow regime. The volumetric mass transfer coefficient (k La) significantly decreases with increasing liquid viscosity. The gas holdup and k La values in the present bubble column of CMC solutions are found to be much higher than those in bubble columns or external-loop airlift columns with a plate-type sparger. The obtained gas phase holdup ( g) and k La data have been correlated with pertinent dimensionless groups in both the bubbly and the churn-turbulent flow regimes.List of Symbols a m–1 specific gas-liquid interfacial area per total volume - A d m2 cross-sectional area of downcomer - A r m2 cross-sectional area of riser - d b m individual bubble diameter - d vs m Sauter mean bubble diameter - D c m column diameter - D L m2/s oxygen diffusivity in the liquid - Fr Froude number, U g/(g Dc)1/2 - g m/s2 gravitational acceleration - G a Galileo number, gD c 3 2/2 app - H a m aerated liquid height - H c m unaerated liquid height - K Pa · sn fluid consistency index - k L a s–1 volumetric mass transfer coefficient - n flow behavior index - N i number of bubbles having diameter d bi - Sc Schmidt number, app/( D L) - Sh Sherwood number, k L a D c 2 /DL - U sg m/s superficial gas velocity - U gr m/s superficial riser gas velocity - V a m3 aerated liquid volume - V c m3 unaerated liquid volume - N/m surface tension of the liquid phase - g gas holdup - app Pa · s effective viscosity of non-Newtonian liquid - kg/m3 liquid density - ý s–1 shear rate - Pa shear stress  相似文献   

5.
6.
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25–0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20–50 mg m?2) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m?2. The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.  相似文献   

7.
8.
Simple nucleotide templating activities are of interest as potential primordial reactions. Here we describe the acceleration of 5′-5′ AppA synthesis by 3′-5′ poly(U) under normal solution conditions. This reaction is apparently templated via complementary U:A base-pairing, despite the involvement of two different RNA backbones, because poly(U), unlike other polymers, significantly stimulates AppA synthesis. These interactions occur in moderate (K+) and (Mg2+) and are temperature sensitive, being more efficient at 10°C than at 4°C, but absent at 20°C. The reaction is only slightly pH sensitive, despite potentially relevant substrate pKa’s. Kinetic data explicitly support production of AppA by interaction of stacked 2MeImpA and pA nucleotides paired with a single molecule of U template. At a lower rate, AppA can also be produced by a chemical reaction between 2MeImpA and pA, without participation of poly(U). Molecular modeling suggests that 5′-5′ joining between stacked or concurrently paired A''s can occur without major departures from normal U-A helical coordinates. So, coenzyme-like 5′-5′ purine dinucleotides might be readily synthesized from 3′-5′ RNAs with complementary sequences.  相似文献   

9.
Alexander Wiedenmann 《BBA》2008,1777(10):1301-1310
The membrane-embedded F0 part of ATP synthases is responsible for ion translocation during ATP synthesis and hydrolysis. Here, we describe an in vitro system for measuring proton fluxes through F0 complexes by fluorescence changes of the entrapped fluorophore pyranine. Starting from purified enzyme, the F0 part was incorporated unidirectionally into phospholipid vesicles. This allowed analysis of proton transport in either synthesis or hydrolysis direction with Δψ or ΔpH as driving forces. The system displayed a high signal-to-noise ratio and can be accurately quantified. In contrast to ATP synthesis in the Escherichia coli F1F0 holoenzyme, no significant difference was observed in the efficiency of ΔpH or Δψ as driving forces for H+-transport through F0. Transport rates showed linear dependency on the driving force. Proton transport in hydrolysis direction was about 2400 H+/(s × F0) at Δψ of 120 mV, which is approximately twice as fast as in synthesis direction. The chloroplast enzyme was faster and catalyzed H+-transport at initial rates of 6300 H+/(s × F0) under similar conditions. The new method is an ideal tool for detailed kinetic investigations of the ion transport mechanism of ATP synthases from various organisms.  相似文献   

10.
Prions are the proteinaceous infectious agents responsible for Transmissible Spongiform Encephalopathies. Compelling evidence supports the hypothesis that prions are composed exclusively of a misfolded version of the prion protein (PrPSc) that replicates in the body in the absence of nucleic acids by inducing the misfolding of the cellular prion protein (PrPC). The most common form of human prion disease is sporadic, which appears to have its origin in a low frequency event of spontaneous misfolding to generate the first PrPSc particle that then propagates as in the infectious form of the disease. The main goal of this study was to mimic an early event in the etiology of sporadic disease by attempting de novo generation of infectious PrPSc in vitro. For this purpose we analyzed in detail the possibility of spontaneous generation of PrPSc by the protein misfolding cyclic amplification (PMCA) procedure. Under standard PMCA conditions, and taking precautions to avoid cross-contamination, de novo generation of PrPSc was never observed, supporting the use of the technology for diagnostic applications. However, we report that PMCA can be modified to generate PrPSc in the absence of pre-existing PrPSc in different animal species at a low and variable rate. De novo generated PrPSc was infectious when inoculated into wild type hamsters, producing a new disease phenotype with unique clinical, neuropathological and biochemical features. Our results represent additional evidence in support of the prion hypothesis and provide a simple model to study the mechanism of sporadic prion disease. The findings also suggest that prion diversity is not restricted to those currently known, and that likely new forms of infectious protein foldings may be produced, resulting in novel disease phenotypes.  相似文献   

11.
Mn2+ ions influence the activity, temperature dependence, and thermostability of the psychrophilic Shewanella-PPase (Sh-PPase), and are required to function in cold environments. The functional characteristics of Sh-PPase on activation with Mn2+ ions are possibly related to conformational changes in the molecule. In this study, conformational changes of Sh-PPase on activation with Mn2+ ions were analyzed in solution by fluorescence spectroscopy analysis of intrinsic tryptophan residues, 1-anilino-8-naphthalene sulfonate fluorescence, and circular dichroism spectroscopy. For Sh-PPase, Mn2+ ions did not affect the flexibility of the tryptophan residues and secondary structure of the enzyme. However, the microenvironment of the tryptophan residues and surface area of Sh-PPase were more hydrophilic on activation with Mn2+ ions. These results indicate that activation with Mn2+ ions causes conformational changes around the aromatic amino acid residues and affects the hydrophobicity of the enzyme surface, which results in conformational changes. Substrate-induced conformational changes reflect that metal-free Sh-PPase in solution indicated an open structure and will be a close structure when binding substrate. In combination of our spectroscopic analyses on Sh-PPase, it can be concluded that activation with Mn2+ ions changes some conformation of Sh-PPase molecule in solution.  相似文献   

12.
This study examined the bioenergetics of Listeria monocytogenes, induced to an acid tolerance response (ATR). Changes in bioenergetic parameters were consistent with the increased resistance of ATR-induced (ATR+) cells to the antimicrobial peptide nisin. These changes may also explain the increased resistance of L. monocytogenes to other lethal factors. ATR+ cells had lower transmembrane pH (ΔpH) and electric potential (Δψ) than the control (ATR) cells. The decreased proton motive force (PMF) of ATR+ cells increased their resistance to nisin, the action of which is enhanced by energized membranes. Paradoxically, the intracellular ATP levels of the PMF-depleted ATR+ cells were ~7-fold higher than those in ATR cells. This suggested a role for the FoF1 ATPase enzyme complex, which converts the energy of ATP hydrolysis to PMF. Inhibition of the FoF1 ATPase enzyme complex by N′-N′-1,3-dicyclohexylcarbodiimide increased ATP levels in ATR but not in ATR+ cells, where ATPase activity was already low. Spectrometric analyses (surface-enhanced laser desorption ionization-time of flight mass spectrometry) suggested that in ATR+ listeriae, the downregulation of the proton-translocating c subunit of the FoF1 ATPase was responsible for the decreased ATPase activity, thereby sparing vital ATP. These data suggest that regulation of FoF1 ATPase plays an important role in the acid tolerance response of L. monocytogenes and in its induced resistance to nisin.  相似文献   

13.
T4 RNA ligase 2 (Rnl2) repairs 3′-OH/5′-PO4 nicks in duplex nucleic acids in which the broken 3′-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2–(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the 5′-PO4 of the nick to form an activated AppN– intermediate (step 2); and attack by the nick 3′-OH on the AppN– strand to form a 3′–5′ phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2–AMP. For substrates with correctly base-paired 3′-OH nick termini, kstep2 was fast (9.5 to 17.9 sec−1) and similar in magnitude to kstep3 (7.9 to 32 sec−1). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3′-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3′-OH elicited severe decrements in the rate of 5′-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3′-terminal ribonucleoside at the nick for optimal 5′-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage.  相似文献   

14.
Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for chemical synthesis of protected 3′-O-phosphoramidite of LNA-2,6-diaminopurine riboside is described. The derivatives of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides were used to prepare complete 2′-O-methyl RNA and LNA-2′-O-methyl RNA chimeric oligonucleotides to pair with RNA oligonucleotides. Thermodynamic stabilities of these duplexes demonstrated that replacement of a single internal 2′-O-methyladenosine with 2′-O-methyl-2,6-diaminopurine riboside (DM) or LNA-2,6-diaminopurine riboside (DL) increases the thermodynamic stability (ΔΔG°37) on average by 0.9 and 2.3 kcal/mol, respectively. Moreover, the results fit a nearest neighbor model for predicting duplex stability at 37°C. D-A and D-G but not D-C mismatches formed by DM or DL generally destabilize 2′-O-methyl RNA/RNA and LNA-2′-O-methyl RNA/RNA duplexes relative to the same type of mismatches formed by 2′-O-methyladenosine and LNA-adenosine, respectively. The enhanced thermodynamic stability of fully complementary duplexes and decreased thermodynamic stability of some mismatched duplexes are useful for many RNA studies, including those involving microarrays.  相似文献   

15.
Haploid recombinant yield is reduced in matings conducted at 42.5 C between deoxyribonucleic acid (DNA) temperature-sensitive [dna(TS)] recipients unable to synthesize DNA at 42.5 C and any of the three major donor types (Hfr, F+, F′) of Escherichia coli. No such reduction is observed in matings conducted at 42.5 C when the dna(TS) mutation is in the donor parent. Evidence is presented which indicates that chromosome transfer from donors to recipients unable to replicate DNA at 42.5 C during vegetative growth occurs at normal frequencies when the mating is conducted at 42.5 C. It is concluded that some stage in haploid recombinant formation is adversely affected in dna(TS) recipients mated at the temperature restrictive for DNA synthesis.  相似文献   

16.
Sabatini A  Vacca A  Iotti S 《PloS one》2012,7(1):e29529
A novel procedure is presented which, by balancing elements and electric charge of biochemical reactions which occur at constant pH and pMg, allows assessing the thermodynamics properties of reaction ΔrG ′0, ΔrH ′0, ΔrS ′0 and the change in binding of hydrogen and magnesium ions of these reactions. This procedure of general applicability avoids the complex calculations required by the use of the Legendre transformed thermodynamic properties of formation ΔfG ′0, ΔfH ′0 and ΔfS ′0 hitherto considered an obligatory prerequisite to deal with the thermodynamics of biochemical reactions. As a consequence, the term “conditional” is proposed in substitution of “Legendre transformed” to indicate these thermodynamics properties. It is also shown that the thermodynamic potential G is fully adequate to give a criterion of spontaneous chemical change for all biochemical reactions and then that the use of the Legendre transformed G′ is unnecessary. The procedure proposed can be applied to any biochemical reaction, making possible to re-unify the two worlds of chemical and biochemical thermodynamics, which so far have been treated separately.  相似文献   

17.
The effects of superficial gas velocity (Ugr), gas entrance velocity (ν), and bubble size on the growth of Tisochrysis lutea was investigated in 600-mL photobioreactors operated with airlift pumps. Superficial gas velocities, calculated from measured air flow rates, ranging from 7 to 93 mm s?1 were created using a 1.6-mm diameter syringe. We tested the effects of sparger velocity over a range of 2.48 to 73.4 m s?1 and the effects of bubble size by using two styles of air stones and an open glass pipette, which created a bubble sizes in the range of 0.5 to 5 mm. We calculated oxygen mass transfer coefficient, kLa, values for all experimental conditions. Cell growth increased linearly with increased superficial gas velocity and decreased with increased sparger velocity. Results indicated that smaller bubble size leads to some initial cell damage, but after time, the increased gas transfer as reflected by the kLa value produced higher growth than larger bubbles. Two mechanisms were observed to correlate with cell damage in T. lutea: increasing velocity at the sparger tip and bubble bursting at the surface. These results demonstrate a method to test sensitivity of T. lutea to aeration, which is important for the design of airlift systems.  相似文献   

18.

Background and Aims

An investigation was carried out to determine whether stomatal closure in flooded tomato plants (Solanum lycopersicum) results from decreased leaf water potentials (ψL), decreased photosynthetic capacity and attendant increases in internal CO2 (Ci) or from losses of root function such as cytokinin and gibberellin export.

Methods

Pot-grown plants were flooded when 1 month old. Leaf conductance was measured by diffusion porometry, the efficiency of photosystem II (PSII) was estimated by fluorimetry, and infrared gas analysis was used to determine Ci and related parameters.

Key Results

Flooding starting in the morning closed the stomata and increased ψL after a short-lived depression of ψL. The pattern of closure remained unchanged when ψ`L depression was avoided by starting flooding at the end rather than at the start of the photoperiod. Raising external CO2 concentrations by 100 µmol mol−1 also closed stomata rapidly. Five chlorophyll fluorescence parameters [Fq′/Fm′, Fq′/Fv′, Fv′/Fm′, non-photochemical quenching (NPQ) and Fv/Fm] were affected by flooding within 12–36 h and changes were linked to decreased Ci. Closing stomata by applying abscisic acid or increasing external CO2 substantially reproduced the effects of flooding on chlorophyll fluorescence. The presence of well-aerated adventitious roots partially inhibited stomatal closure of flooded plants. Allowing adventitious roots to form on plants flooded for >3 d promoted some stomatal re-opening. This effect of adventitious roots was not reproduced by foliar applications of benzyl adenine and gibberellic acid.

Conclusions

Stomata of flooded plants did not close in response to short-lived decreases in ψL or to increased Ci resulting from impaired PSII photochemistry. Instead, stomatal closure depressed Ci and this in turn largely explained subsequent changes in chlorophyll fluorescence parameters. Stomatal opening was promoted by the presence of well-aerated adventitious roots, implying that loss of function of root signalling contributes to closing of stomata during flooding. The possibility that this involves inhibition of cytokinin or gibberellin export was not well supported.Key words: Root to shoot communication, flooding stress, stomatal closure, photosynthesis, chlorophyll fluorescence, gas exchange, adventitious roots, plant hormones, abscisic acid, cytokinins, gibberellic acid  相似文献   

19.
Calcium and thiol reactivity of human plasma clotting factor XIII   总被引:4,自引:3,他引:1       下载免费PDF全文
1. The reaction of iodoacetate, 2-chloromercuri-4-nitrophenol and 5,5′-dithiobis-(2-nitrobenzoate) with thrombin-cleaved Factor XIII (i.e. Factor XIIIa) was accompanied by enzyme inhibition. 2. The reaction with iodoacetate and 5,5′-dithiobis-(2-nitrobenzoate) was absolutely dependent on Ca2+, and the rate of reaction increased with the Ca2+ concentration up to very high, non-physiological concentrations. 3. 2-Chloromercuri-4-nitrophenol reacted with Factor XIIIa in the absence of Ca2+, but at a much slower rate. 4. Stopped-flow methods were used to quantify the reaction with 5,5′-dithiobis-(2-nitro-benzoate) because of the Ca2+-dependent dissociation of Factor XIIIa (a2b2) and subsequent aggregation of the a′ chains into turbid precipitates. 5. The 3-carboxy-4-nitrothio-phenolate released was consistent with the reaction of 2 thiol groups/molecule of Factor XIIIa. The isolated b chains of Factor XIII did not react with either of the chromophoric reagents. This indicated that the a′ chains of Factor XIIIa were responsible for the thiol reactivity of the enzyme. 6. The Ca2+ dependence of the enzyme inhibition by these thiol reagents was very dependent on protein concentration. This is discussed in relation to the Ca2+-induced dissociation of Factor XIIIa. 7. The acceptor substrate, casein, decreased the Ca2+ concentration required for enzyme inhibition by both the mercurial and the aromatic disulphide compounds. Dansylcadaverine did not affect Ca2+ dependence of inhibition.  相似文献   

20.
The responses of minimal and maximal fluorescence yields of chlorophyll a to irradiance of actinic white light were determined by pulse modulated fluorimetry in leaf discs from tobacco, Nicotiana tabacum, at 1.6, 20.5, and 42.0% (v/v) O2. Steady-state maximal fluorescence yield (Fm′, measured during a saturating light pulse) declined with increasing irradiance at all O2 levels. In contrast, the steady-state minimal fluorescence yield (Fo′, measured during a brief dark interval) increased with irradiance relative to that recorded for the fully dark-adapted leaf (Fo) or that observed after 5 minutes of darkness (Fo*). The relative magnitude of this increase was somewhat greater and extended to higher irradiances at the elevated O2 levels compared with 1.6% O2. Suppression of Fo′ was only observed consistently at saturating irradiance. The results are interpreted in terms of the occurrence of photosystem II units possessing exceedingly slow turnover times (i.e. “inactive” units). Inactive units play an important role, along with thermal deactivation of excited chlorophyll, in determining the response of in vivo fluorescence yield to changes in irradiance. Also, a significant interactive effect of O2 concentration and the presence or absence of far red light on oxidation of photosystem II acceptors in the dark was noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号