首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Four substitutions at serine residue 160 which increase the activity of the sigma 54-dependent activator protein NTRC in the absence of NTRB have been analysed in detail. Mutagenesis of the putative phosphoacceptor site of NTRC and analysis of double mutants indicate that the positive control function of the S160W and S160C mutants is phosphorylation-dependent, whereas the activity of the S160Y and S160F mutants is phosphorylation-independent. This was confirmed with two purified mutant proteins in vitro. Occupancy of tandem NTRC-binding sites upstream of the Klebsiella pneumoniae nifL promoter by S160W protein is also phosphorylation-dependent in contrast to occupancy by S160F protein, confirming that both the DNA-binding and activator functions of NTRC are influenced by phosphorylation. The S160W and S160C mutants are apparently more responsive than wild-type protein to 'cross-talk' by other members of the histidine protein kinase family but are less responsive to phosphorylation and dephosphorylation mediated by NTRB.  相似文献   

5.
6.
7.
Oxygen sensitivity of the nifLA promoter of Klebsiella pneumoniae.   总被引:4,自引:3,他引:1       下载免费PDF全文
Q T Kong  Q L Wu  Z F Ma    S C Shen 《Journal of bacteriology》1986,166(1):353-356
Oxygen sensitivity of the nifLA promoter of Klebsiella pneumoniae has been demonstrated. Studies on the oxygen regulation of nifB-lacZ and nifH-lacZ fusions in the presence of the nifLA operon, which contains either an intact or a deleted nifL gene, indicate that possibly both the nifL promoter and the nifL product are responsible for nif repression by oxygen.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
NADP-thioredoxin reductases (NTRs) reduce thioredoxins (Trxs), using NADPH as a reductant, together constituting complete redox systems (NTS). Beside NTRA and NTRB targeted to both cytosol and mitochondria of plant cells, there is in chloroplasts an unusual NTR (NTRC) harbouring a Trx domain in a C-terminal extension, as recently reported in Oryza sativa. Although NTRC may constitute a complete NTS, it was described as a bifunctional enzyme. Because the gene is only present in photosynthetic organisms and the protein in green tissues, NTRC was thought to have a role restricted to photosynthetic cells. To determine whether NTRC from dicot plants is a bifunctional enzyme or a complete NTS, as well as to identify its putative target, NTRC from Medicago truncatula was cloned and NTRA was cloned for comparison. Here evidence is presented that MtNTRC (i) acts as an NTS and reduces dithiobisnitrobenzoate (DTNB) with a turnover (0.62 s(-1)) similar to that measured with MtNTRA in the presence of a Trxh (0.81 s(-1)); (ii) is able to use both NADPH (k(M)=2.4 microM) and NADH (k(M)=11 microM) as cofactors; (iii) efficiently reduces BAS1, a plastidial peroxiredoxin; and (iv) is expressed in both leaves and stems but unexpectedly is even more abundant in cotyledons from dry and germinating seeds. Because BAS1 is also present in both green tissues and seeds, NTRC/BAS1 may be involved in the scavenging of peroxides produced in green tissues during the day or the night and in seeds during germination. These results suggest different roles for NTRC in monocot and dicot plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号