首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-frequency motion in membranes. The effect of cholesterol and proteins   总被引:3,自引:0,他引:3  
Nuclear magnetic resonance (NMR) relaxation techniques have been used to study the effect of lipid-protein interactions on the dynamics of membrane lipids. Proton enhanced (PE) 13C-NMR measurements are reported for the methylene chain resonances in red blood cell membranes and their lipid extracts. For comparison similar measurements have been made of phospholipid dispersions containing cholesterol and the polypeptide gramicidin A+. It is found that the spin-lattice relaxation time in the rotating reference frame (T1 rho) is far more sensitive to protein, gramicidin A+ or cholesterol content than is the laboratory frame relaxation time (T1). Based on this data it is concluded that the addition of the second component to a lipid bilayer produces a low-frequency motion in the region of 10(5) to 10(7) Hz within the membrane lipid. The T1 rho for the superimposed resonance peaks derived from all parts of the phospholipid chain are all influenced in the same manner suggesting that the low frequency motion involves collective movements of large segments of the hydrocarbon chain. Because of the molecular co-operativity implied in this type of motion and the greater sensitivity of T1 rho to the effects of lipid-protein interactions generally, it is proposed that these low-frequency perturbations are felt at a greater distance from the protein than those at higher frequencies which dominate T1.  相似文献   

2.
The 1H NMR spin-lattice relaxation time (T1), spin-spin relaxation time (T2), and spin-lattice relaxation time in the rotating frame (T1rho) were determined for Novikoff hepatoma, Walker-256 Carcinosarcoma, Sarcoma-180 and Ehrlich Ascites tumor as well as for 7 normal tissues in the rat at 2.18 MHz. T1 values yielded improved discrimination of normal and malignant tissue compared to previous results at higher frequencies.  相似文献   

3.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions. The lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (-120 degrees C to +120 degrees C). Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids. Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 +/- 0.026 ml/g for the partial specific volume of this lipid. We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude. Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

4.
The relaxation rates of the carbon-bound protons and of the three assigned phosphorus resonances of propionyl-CoA were measured in solutions of free propionyl-CoA and of the transcarboxylase-propionyl-CoA complex. In free propionyl-CoA, analysis of the 1/T1 values of 15 protons at 100 and 220 MHz and of 1/T1 and 1/T2 of the three phosphorus atoms at 40.5 MHz indicated free rotation of the propionyl region (taur approximately 3 x 10(-11) sec) but hindered motion of the remainder of the molecule with correlation times of 1-3. 5 x 10(-10) sec, approaching the tumbling time of the entire molecule (taur - 6 x 10(-10) sec. The correlation times of the three phosphorus atoms were indistinguishable from those of their nearest neighbor protons. The effects of three homogeneous enzyme preparations with varying contents of Zn(II), Co(II), and Cu(II) on 1/T1 of 12 protons and 3 phosphorus atoms of prionyl-CoA were analyzed with the help of simultaneous equations to yield the individual contributions at the three metal sites. Only diamagnetic effects were detected on the relaxation rates of the three phosphorus atoms. From the diamagnetic effects it was calculated that the motions of the prionyl side chain and of the terminal pantetheine methylene protons were hindered on the enzyme by an order of magnitude (taur approximately 6 x 10(-10) sec) and that the phosphorus atoms were hindered by two orders of magnitude (taur approximately 1 x 10(-8) sec) over the taur values found in free propionyl-CoA, but that these taur values remained well below that of the entire protein molecule (taur =6 x 10(-7) sec)...  相似文献   

5.
We have determined the relative magnitudes of the intra- and intermolecular contributions to the nuclear magnetic relaxation rates of the methylene protons of the hydrocarbon chains in phosphatidylcholine bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). These measurements have been made by the isotopic dilution method using deuterated phosphatidylcholines containing fully deuterated hydrocarbon chains. The results showed that both the methylene linewidths and the spin-lattice relaxation rates are dominated by intramolecular dipolar interactions. Both the intra- and intermolecular contributions to the spin-lattice relaxation rate were found to decrease with increasing temperature and to exhibit a frequency dependence, the rates being higher at the lower NMR frequency in both cases. These observations indicate that both intra- and intermolecular dipolar interactions are modulated by anisotropic motions. In the case of the intermolecular dipolar fields, it is proposed that they are modulated both by the rapid rotational isomerization of the hydrocarbon chains as well as by lateral diffusion of the lipid molecules. That the hydrocarbon chain motion must be fairly effective in effecting efficient spin-lattice relaxation is evident from the negligible intramolecular interchain contribution to the relaxation found in the present work.  相似文献   

6.
The 1H NMR spectrum of a 12 base pair DNA restriction fragment has been measured at 300 and 600 MHz and resonances from over 70 protons are individually resolved. Relaxation rate measurements have been carried out at 300 MHz and compared with the theoretical predictions obtained using an isotropic rigid rotor model with coordinates derived from a Dreiding model of DNA. The model gives results that are in excellent agreement with experiment for most protons when a 7 nsec rotational correlation time is used, although agreement is improved for certain base protons by using a shorter correlation time for the sugar group, or by increasing the sugar-base interproton distances. A comparison of non-selective and selective spin-lattice relaxation rates for carbon bound protons indicates that there is extensive spin diffusion even in this short DNA fragment. Examination of the spin-spin relaxation rates for the same type of proton on different base pairs reveals little sequence effect on conformation.  相似文献   

7.
T1 relaxation in the rotating frame (T1rho) is a sensitive magnetic resonance imaging (MRI) contrast for acute brain insults. Biophysical mechanisms affecting T1rho relaxation rate (R1rho) and R1rho dispersion (dependency of R1rho on the spin-lock field) were studied in protein solutions by varying their chemical environment and pH in native, heat-denatured, and glutaraldehyde (GA) cross-linked samples. Low pH strongly reduced R1rho in heat-denatured phantoms displaying proton resonances from a number of side-chain chemical groups in high-resolution 1H NMR spectra. At pH of 5.5, R1rho dispersion was completely absent. In contrast, in the GA-treated phantoms with very few NMR visible side chain groups, acidic pH showed virtually no effect on R1rho. The present data point to a crucial role of proton exchange on R1rho and R1rho dispersion in immobilized protein solution mimicking tissue relaxation properties.  相似文献   

8.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions.This lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (?120°C to +120°C).Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids.Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 ± 0.026 ml/g for the partial specific volume of this lipid.We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude.Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

9.
M Eisenstadt 《Biochemistry》1985,24(14):3407-3421
We have measured T1 and T2 of protein and water protons in hemoglobin solutions using broad-line pulse techniques; selective excitation and detection methods enabled the intrinsic protein and water relaxation rates, as well as the spin-transfer rate between them, to be obtained at 5, 10, and 20 MHz. Water and protein T1 data were also obtained at 100 and 200 MHz for hemoglobin in H2O/D2O mixtures by using commercial Fourier-transform instruments. The T1 data conform to a simple model of two well-mixed spin systems with single intrinsic relaxation times and an average spin-transfer rate, with each phase recovering from a radio-frequency excitation with a biexponential time dependence. At low frequencies, protein T1 and T2 agree reasonably with a model of dipolar relaxation of an array of fixed protons tumbling in solution, explicitly calculating methyl and methylene relaxation and using a continuum approximation for the others. Differing values in H2O and D2O are mainly ascribed to solvent viscosity. For water-proton relaxation, T1, T2, and spin transfer were measured for H2O and HDO, which enabled a separation of inter-and intramolecular contributions to relaxation. Despite such detail, few firm conclusions could be reached about hydration water. But it seems clear that few long-lived hydration sites are needed to explain T1 and T2, and the spin-transfer value mandates fewer than five sites with a lifetime longer than 10(-8) s.  相似文献   

10.
Solid-state 1H, 13C, 14N, and 31P NMR spectroscopy was used to study the effects of the bee venom peptide, melittin, on aligned multilayers of dimyristoyl-, dilauryl- and ditetradecyl-phosphatidylcholines above the gel to liquid-crystalline transition temperature, Tc. Both 31P spectra from the lipid headgroups and 1H resonances from the lipid acyl chain methylene groups indicate that the peptide does not affect the mosaic spread of the lipid molecules at lipid:peptide molar ratios of 10:1, or higher. None of the samples prepared above Tc showed any evidence of the formation of hexagonal or isotropic phases. Melittin-induced changes in the chemical shift anisotropy of the headgroup phosphate and the lipid carbonyl groups, and in the choline 14N quadrupole splittings, show that the peptide has effects on the headgroup order and on the molecular organization in the sections of the acyl chains nearest to the bilayer surface. The spin-lattice relaxation time for the lipid acyl chain methylene protons was found to increase and the rotating-frame longitudinal relaxation time to markedly decrease with the addition of melittin, suggesting that motions on the nanosecond time scale are restricted, whereas the slower, collective motions are enhanced in the presence of the peptide.  相似文献   

11.
Spin-lattice (Ti) relaxation mesurements can provide information about the presence of oxygen in the environment of a nucleus, since oxygen, by virtue of its paramagnetic properties, increases Ti relaxation rates. Spin-lattice relaxation times were measured for the choline, fatty acid methylene, and fatty acid methyl protons of sonicated dimyristoyl phosphatidyl choline vesicles in D2O at several oxygen pressures. The increase in relaxation rate due to oxygen was found to be greater for the fatty acid resonances than for the choline resonance. This was interpreted to indicate the presence of oxygen in the hydrocarbon core of the bilayer. In addition, the Ti relaxation data permitted calculation of the oxygen diffusion coefficient in the water and lipid phases.  相似文献   

12.
Whole gastrocnemius muscles were incubated in Ringer's solution enriched with H2-17O; the paired contralateral gastrocnemius muscles were incubated in a similar solution enriched with deuterons, as well. Subsequently, the longitudinal relaxation times (T1) were measured 17-O, 2-D, and 1-H, both at 8.1 MHz and at 4.3 MHz. The results indicate that: (a) the absolute values of T1 characterizing the three nuclides are different in muscle and pure water. (b) the longitudinal relaxation rates of all three have an identical frequency dependence over the range studied, (c) the ratio (T1)2D/(T1)17ois the same in muscle water and pure water, while the ratio (T1)1H/(T1)17o is 2.1 times greater in pure water than it is in muscle water, and (d) 30-49 percent substitution of 2-D for 1-H has very little effect on the spin-lattice relaxation of tissue water protons. These data suggest that muscle water is in rapid exchange between a small fraction of immobilized molecules and a large fraction of free water. The results render unlikely the possibility that hypothetical ordering of muscle water significantly contributes to its longitudinal relaxation.  相似文献   

13.
The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of 31P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the delta protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of 31P relaxation rates in E.MnADP and E.MnATP yields activation energies (delta E) in the range 6-10 kcal/mol. Thus, the 31P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E.CoADP and E.CoATP exhibit frequency dependence and delta E values in the range 1-2 kcal/mol; i.e., these rates depend upon 31P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 A, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the 1H spin-lattice relaxation rate of the delta protons of arginine in the E.MnADP.Arg complex was also measured at three frequencies (viz., 200, 300, and 470 MHz). These 1H experiments were performed in the presence of sufficient excess of arginine to be observable over the protein background but with MnADP exclusively in the enzyme-bound form so that the enhancement in the relaxation rates of the delta protons of arginine arises entirely from the enzyme-bound complex. Both the observed frequency dependence of these rates and the delta E less than or equal to 1.0 +/- 0.3 kcal/mol indicate that this rate depends on the 1H-Mn(II) distances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1H- and 2H-NMR study of bovine serum albumin solutions   总被引:1,自引:0,他引:1  
Frozen, native and denatured bovine serum albumin solutions have been studied with a wide-band NMR pulse spectrometer. Both macromolecular and water protons spin-spin and spin-lattice relaxation times--t2m, t1m, t2w, t1w--have been measured between 170 and 360 K. In the native sample, the t2m process is the tumbling rate of the bovine serum albumin molecules. It gives to the spin-lattice relaxation an omega 0(-2) frequency dependence at room temperature in the studied frequency range, 6-90 MHz. An additional process contributes to t1m-1; it arises from internal backbone or segmental motions and provides a lower frequency behaviour. On denaturation, bovine serum albumin molecules lose their tumbling motion and form a rigid network, while internal backbone motions seem unaffected. Calorimetric Cp measurement confirms the occurrence of a phase transition upon denaturation. 1H and 2H spin-lattice relaxation times of water protons depend mainly on bound water mobility. 1H and 2H t2w depend also on the tertiary structure of bovine serum albumin and on its mobility, because of a fast exchange process between water and some protein protons (or deutons), while a cross-relaxation process between protein and water protons contributes to 1H t1w. Denaturation has no influence on bound water motional properties and bound water population.  相似文献   

15.
Spin-spin relaxation time (T2), spin-lattice relaxation time (T1), and spin-lattice relaxation time in the rotating frame (T1p) of water protons in solutions of bacteriophage T2 were studied by pulsed nuclear magnetic resonance. The frequency dependence of the measurements exhibits a dispersion implying existence of a fraction of water molecules in solution with a correlation time distribution centered at approximately 10(-5) sec which is strongly influenced by the reorientational motions of virus particles. Experiments were carried out with two forms of bacteriophage T2 existing at pH 5.4 and 7.8 respectively. The different structures of the virus at these two pH values are reflected in the NMR relaxation behavior of water protons.  相似文献   

16.
The orientation dependence of the low frequency NMR relaxation time, T(1rho), of protons in aligned phospholipid bilayers was measured using 13C cross polarisation and direct proton experiments. The contribution of intra- and inter-molecular interactions to proton T(1rho) was determined by using dimyristoyl phosphatidylcholine (DMPC) with one hydrocarbon chain deuterated and dispersed in perdeuterated DMPC. The results indicated that intramolecular motions on the kHz timescale were the major cause of T(1rho) relaxation in phospholipid bilayers.  相似文献   

17.
Natural abundance 13C solid-state nuclear magnetic resonance spectroscopy was used to investigate the effect of the incorporation of cholesterol on the dynamics of dimyristoylphosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. In particular, the use of a combination of the cross-polarization and magic angle spinning techniques allows one to obtain very high resolution spectra from which can be distinguished several resonances attributed to the polar head group, the glycerol backbone, and the acyl chains of the lipid molecule. To examine both the fast and slow motions of the lipid bilayers, 1H spin-lattice relaxation times as well as proton and carbon spin-lattice relaxation times in the rotating frame were measured for each resolved resonance of DMPC. The use of the newly developed ramped-amplitude cross-polarization technique results in a significant increase in the stability of the cross-polarization conditions, especially for molecular groups undergoing rapid motions. The combination of T1 and T1 rho measurements indicates that the presence of cholesterol significantly decreases the rate and/or amplitude of both the high and low frequency motions in the DMPC bilayers. This effect is particularly important for the lipid acyl chains and the glycerol backbone region.  相似文献   

18.
J Feigon  W A Denny  W Leupin  D R Kearns 《Biochemistry》1983,22(25):5930-5942
A variety of one-dimensional proton NMR methods have been used to investigate the properties of two synthetic DNA decamers, d(ATATCGATAT) and d(ATATGCATAT). These results, in conjunction with the results of two-dimensional NMR experiments, permit complete assignment of the base proton resonances. Low-field resonances were assigned by sequential "melting" of the A . T base pairs and by comparison of the spectra of the two decamers. Below 20 degree C spin-lattice relaxation is dominated by through-space dipolar interactions. A substantial isotope effect on the G imino proton relaxation is observed in 75% D2O, confirming the importance of the exchangeable amino protons in the relaxation process. A somewhat smaller isotope effect is observed on the T imino proton relaxation. At elevated temperatures spin-lattice relaxation of the imino protons is due to proton exchange with solvent. Apparent activation energies for exchange vary from 36 kcal/base pair for base pairs (3,8) to 64 kcal/mol for the most interior base pairs (5,6), indicating that disruption of part, or all, of the double helix contributes significantly to the exchange of the imino protons in these decamers. By contrast, single base pair opening events are the major low-temperature pathways for exchange from A X T and G X C base pairs in the more stable higher molecular weight DNA examined in other studies. The temperature dependence of the chemical shifts and line widths of certain aromatic resonances indicates that the interconversion between the helix and coil states is not in fast exchange below the melting temperature, Tm. Within experimental error, no differential melting of base pairs was found in either molecule, and both exhibited melting points Tm = 50-52 degrees C. Spin-spin and spin-lattice relaxation rates of the nonexchangeable protons (TH6, AH8, and AH2) are consistent with values calculated by using an isotropic rotor model with a rotational correlation time of 6 ns and interproton distances appropriate for B-family DNA. The faster decay of AH8 compared with GH8 is attributed to an interaction between the thymine methyl protons and the AH8 protons in adjacent adenines (5'ApT3'). The base protons (AH8, GH8, and TH6) appear to be located close (1.9-2.3 A) to sugar H2',2" protons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
With the aid of paramagentic praseodymium ions the resonances at 60 MHz of the inward and outward facing choline methyl protons of sonicated egg yolk phosphatidylcholine vesicles were resolved. The subsequent addition of 2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPO) to the vesicle suspension broadened the inner and outer resonances equally. TEMPO easily penetrates the egg yolk phosphatidylcholine vesicles and has free access to the entire lipid volume above the gel to liquid crystalline transition temperature. The electron spin resonance (ESR) spectrum of TEMPO in the egg yolk phosphatidylcholine suspension exhibits features indicating that TEMPO dissolves principally in the hydrocarbon portion of the egg yolk phosphatidylcholine bilayer. The egg yolk phosphatidylcholine methylene chain proton resonances are also broadened by TEMPO notably to a greater extent than the choline methyl resonances. These data indicate that TEMPO should be more sensitive to the melting behavior of the fatty acyl chains of phospholipid suspensions than to the polar head groups.  相似文献   

20.
Spin-lattice and spin-spin relaxation rates (1/T1 and 1/T2) have been determined for the catalytically essential coenzyme phosphate at the active site of glycogen phosphorylase in both activated (R state) and inactive (T state) conformations of the enzyme. Dipolar contributions to 31P relaxation due to exchangeable protons on the phosphate group have been determined by measurement of relaxation rates at different concentrations of H2O and D2O, and field dependence studies have been performed to estimate the contribution of chemical shift anisotropy to the remaining 31P relaxation in D2O. At 109 MHz, dipolar relaxation from exchangeable protons was found to account for 50% of the spin-lattice relaxation for activated phosphorylase in 75% H2O, the remainder being due to chemical shift anisotropy. The spin-lattice relaxation rates in D2O for R-state glycogen phosphorylase are very similar to those measured for other proteins of very different size such as actin (Brauer, M., and B. D. Sykes, 1981, Biochemistry. 20:6767-6775), alkaline phosphatase (Coleman, J. E., I. D. Armitage, J. F. Chlebowski, J. D. Otvos, and A. J. M. S. Uiterkamp, 1979), and phosphoglucomutase (Rhyu, G. I., W. J. Ray, Jr., and J. L. Markley, 1984, Biochemistry. 23:252-260). In inactive (T state) phosphorylase the spin-lattice relaxation rates were almost an order of magnitude slower, while the spin-spin relaxation rates were essentially identical. These results have been analyzed by calculating the theoretically expected 31P relaxation rates in the presence of internal motions that are included in the relaxation calculation using the model-free approach of Lipari and Szabo (1982, J. Am. Chem. Soc. 104:4564-4559).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号